
If i /I
I /

.' f
I II I I

i
I I/

I
f

I //
I

! / II
I

ii

// /
II I

I I I

I I
!

r-----:;:~::;~::;:::;;:~:;:::~-----l
I LIMITED WARRANTY I
I Sharp Electronics C.orporatio.n warrants each of t.hese products to the original purchaser ~o I
I be free from defective materials and workmanship. Under this warranty the product will I
I be repaired or replaced, at our option, without charge for parts or labor, with the exception I
I of supplies, such as batteries, ribbons, inked rollers, etc., when returned to a SHARP I
I FACTORY SERVICE CENTER listed in the instruction booklet supplied with your I
I product. I
I This warranty does not apply to cassette tapes, software programs or appearance items nor I
I to any product whose exterior has been damaged or defaced, nor to any product subjected I
I to misuse, abnormal service or handling, nor to any product altered or repaired by other I
I than a SHARP FACTORY SERVICE CENTER. This warranty does not apply to any I
I product purchased outside the United States, its territories or possessions. I
II The period of the warranty shall be ninety (90) days on parts and labor from the date of the I

original purchase.

I
I This warranty entitles the original purchaser to have the warrantied parts and labor rendered I
I

at no cost for the period of the warranty described above when the unit is carried or shipped I
I prepaid to a SHARP FACTORY SERVICE CENTER together with proof of purchase. I
I THIS SHALL BE THE EXCLUSIVE WRITTEN WARRANTY OF THE ORIGINAL I
t PURCHASER AND NEITHER THIS WARRANTY NOR ANY OTHER WARRANTY, I
I EXPRESSED OR IMPLIED SHALL EXTEND BEYOND THE PERIOD OF TIME LISTED I
I ABOVE. IN NO EVENT SHALL SHARP BE LIABLE FOR CONSEQUENTIAL ECO· I
t NOMIC DAMAGE OR CONSEQUENTIAL DAMAGE TO PROPERTY. SOME STATES I
I DO NOT ALLOW A LIMITATION ON HOW LONG AN IMPLIED WARRANTY LASTS i
t OR AN EXCLUSION OF CONSEQUENTIAL DAMAGE, SO THE ABOVE LIMITATION ',:
t AND EXCLUSION MAY NOT APPLY TO YOU. IN ADDITION, THIS WARRANTY

I GIVES SPECIFIC LEGAL RIGHTS AND YOU MAY HAVE OTHER RIGHTS WHICH i
VARY FROM STATE TO STATE. IL I

FOR YOUR RECORDS

For your assistance in reporting this electronic calculator in case of
loss or theft, please record below the model number and serial number

which are located on the bottom of the unit.
Please retain this information.

Model Number _

Date of Purchase

Serial Number _

Place of Purchase

Allow us to thank you for purchasing the SHARP PC-1500 Pocket Computer. We are confident
that you will enjoy using this small, but powerful, new friend in your daily life. The PC-1500 is
one of the world's most sophisticated hand held computers. Although it shares many features
with its cousin, the SHARP PC-1211 Pocket Computer, the PC-1500 provides you with such
advanced capabilities as:

o A 7 by 156 programmable dot-matrix LCD display.

o A tone generator for creating special effects under program control.

o ASCII character set with upper and lower cases.

o Scientific and mathematical functions.

o User-definable function keys.

o An extended version of BASIC which provides two-dimensional arrays, variable length
strings, graphics commands, program chaining and many other advanced features.

o Up to 8K bytes of optional RAM. (4KB: Model CE-151, 8KB: Model CE-155)

o An optional Printer/Cassette Interface (Model CE-150) which allows 4 color X- Y plotting,
program and data storage, and printing of programs and data in one of nine different
character sizes.

This machine is capable of many of the functions which only a few years ago would have
filled a warehouse with tubes, wires, and engineers. Such sophistication does not require
Engineering credentials to use. On the contrary, the PC-1500, and this manual, are designed
to help you gain rapid access to this new technology.

We have divided this manual into five major sections allowing the novice user to rapidly attain
competence. Advanced users may explore the features of the PC-1500 through the sections on
Advanced Programming, and Advanced Calculations, and through the Appendices.

The style of this manual is conversational and many examples are provided. But don't take our
word for it, to see how easy it is to get started, turn to Chapter O. But first, be sure that the
batteries have been loaded. If they haven't, Appendix B provides instructions.

Above all, have fun and don't hesitate to experiment!

COMMANDS FOR THE PRINTER AND TAPE RECORDER
The commands for the printer and tape recorder to be described hereafter are only available
on the optional printer CE-150 (with a built-in cassette interface). Since the computer is
not equipped with these commands, programming with them is possible only when con­
nected to the CE·150. Therefore, be sure to connect to the CE-150 for programming by

using these commands.

Since the liquid crystal display of the computer is made of glass, it must be handled with

some care.

To ensure trouble-free operation of your SHARP pocket computer we recommend that:

1. You keep the computer in an area free from extreme temperature changes, moisture, or dust.

During warm weather, vehicles left in direct sun light are subject to high temperature build up.
Prolonged exposure to high temperature may cause damage to your computer.

2. You use only a soft, dry cloth to clean the computer. Do not use solvents, water, or wet cloths.
3. To avoid battery leakage, remove the batteries when the computer will not be used for an

extended period of time.
4. If service is required, the computer be returned only to an authorized SHARP Service Center.
5. This manual be kept for further reference.

Trouble-Shooting

This unit, if subjected to strong external noise or impact during operation, may render all its keys,
including @ffiK key, inoperative.

Should this occur, press the ALL RESET switch on the back of the unit for approx. 15 seconds,
BREAK

with the @[) key held down.

All reset switch

[

Press the all reset switch with anY~
pointed object such as a ball-point
pen. Do not use easily broken points
such as mechanical pencils or the
tips of needles.

Then check that INEW0?: CHECK I is indicated on the display. If the display does not read
NEW0?: CHECK, perform the above operation once again.
And press the keys ~[][) []] 00 00 IENTERI •

Next, press the keys I SHIFT I~[][)[]] 00 IENTER I .
With this operation, the program, data and all the reserved contents are cleared, so do not press
the ALL RESET switch except when the above trouble occurs.

2

2.6 K Bytes
624 Bytes

CMOS 8 bit
16 K Bytes
3.5 K Bytes

0.9 K Bytes
80 Bytes
196 Bytes

Model:
Number of calculation digits:
Calculation system:

Program language:
Capacity:

Calculations:

Editing function:

Memory protection:

Display:

Keys:

Power supply:

Power consumption:
Operating time:
Operating temperature:
Dimensions:

Weight:
Accessories:

Options:

PC·1500 Pocket Computer
10 digits (mantissa) + 2 digits (exponent)
According to mathematical formula (with priority judging func·
tion)
BASIC
CPU:
System ROM:
Memory Capacity RAM:

System area
Input buffer:
Stack:
Others:

User area
Fixed memory area:

(A-Z, A$-Z$)
Basic program data area: 1850 Bytes
Reserve area: 188 Bytes

Four arithmetic calculations, power calculation, trigonometric
and inverse trigonometric functions, logarithmic and exponential
functions, angular conversion, extraction of square root, sign
function, absolutes, integers and logical calculations.
Cursor shifting (I> <l)

Insertion (INS)
Deletion (DEL)
Line up and down (l , t)

CMOS battery back-up
(program, data and reserve memories are protected)
Liqu id Crystal
26 Character Width
7 x 156 Dot Grap~ics
65 Keys including

Alphabetic,
Numeric,
User·definable Function,
Pre·programmed

6.0V, DC:
4 dry batteries (Type UM·3, AA or R6)
6.0V, DC: 0.13W
Approx. 50 hours on dry batteries (Type (UM·3, AA or R6))
O°C - 40°C (32°F - 104°F)
195(W) x 86(0) x 25.5(H) mm
7·11/16"(W) x 3·3/8"(0) x 1"(H)
Approx. 375g (0.83 Ibs.) (with batteries)

Soft case, four dry batteries, two keyboard templates, name label
and instruction manual
Printer/cassette interface (CE·150)
Expansion memory module (Plug·in type, 4K Byte RAM CE·151)

3

C LF_~_g_[S_~_@_(;5_©_@_~_lJ_~~_Lr_~)

Page
An Introductory Note .. 1
Operational Notes. .. 2

PC-1500 Specifications. .. 3
Table of Contents. .. 4

O. Instant Programming. .. 8
A. Example 1 .. 8
B. Example 2 .. 9

I. Getting Acquainted 11
A. ON and OFF keys 12
B. Alphabetic keys 12
C. Numeric keys and Arithmetic Operation keys 12
D. SHIFT key 12
E. Lower-case Letters and the SMALL key 12
F. The Display 13
G. The Cu rsor and the Prompt 13
H. Clear key 13
I. ENTER key 13
J. Error Messages 13
K. Battery Function Indication 14

L. How to use the RCL (RECALL) key 14

II. Taking the Plunge •.•... 15
A. MODE key 15
B. Simple Calculations 15
C. Serial Calculations 16
D. Calculations with Negative Numbers 16
E. Compound Calculations 17
F. Use of Parentheses 17
G. Logical Comparisons and Inequalities 18
H. Editing Keys and Functions 19

H.1. Left Arrow/DELete Key 19
H.2. Right Arrow/INSert Key 20
H.3. Recall Function 21

I. Variables 21
J. We Pause 24

SUMMARy 24

III. The Mysterious (?) Art of Programming 26
Foreword 26
A. What Is A Program? 26
B. How Do I Program? 26
C. COMMANDS vs. STATEMENTS 27
D. Line Numbers......................................•......... 27
E. Program-line Review keys•...... 28
F. A Closer Look At Some Old Friends 29

F.1. The NEW Command 29

4

F.2. The LET Statement 29
F.3. The PRINT Statement 29

G. The PAUSE Statement 34
H. The INPUT Statement 35
I. Shortcuts and Helpful Hints 39

1.1. Abbreviations 40
1.2. Multiple Statements Using the Colon 41

J. Error Correction in the PROgram Mode 42
K. The LIST Command 43
L. The More, the Merrier .43

L.1. The END Statement 43
L.2. RUN line-number 44

M. Control Statements 44
N. IF THEN 44
O. GOTO 46
P. FOR NEXT 51
Q. WAIT 54
R. READ, DATA, RESTORE 55
S. REM 57
T. GOSUB and RETURN 58
Summary of PROgram Mode Editing Features 59

lV. Advanced Calculations 60
A. Scientific Notation 60
B. Range of Calculations; Overflow, Underflow , 62
C. Root, Power, and Pi 62
D. Angular Modes 64
E. Trigonometric Functions 64

SIN, COS, TAN, ASN, ACS, ATN 65
F. Logarithmic Functions 65

LN, LOG, EXP 65
G. Angle Conversion 66

DEG, DMS " 66
H. Miscellaneous Functions 66

ABS, INT, SGN 66,67

V. Advanced Programming 67
A. Arrays and Subscripted Variables 67

DIM 67
B. More On Character Strings 70

B.1. DIMensioning Strings 70
B.2. Concatenation 70
B.3. String Comparison 72

C. Functions 72
C.1. ASC , 72
C.2. CH R$ 73
C.3. INKEY$ •...74
CA. LEN•..............75
C.5. LEFT$ 75
C.6. MID$ •...76
C.7. RIGHT$ 77
C.8. RND 77
C.9. RANDOM•...................................78
C.10. STR$ ·78

5

C.ll. STATUS 79
C.12. TIME 79
C.13. VAL 80

D. PRINT USING " '" 80
E. Computed Control Transfer 83

ON GOTO, ON GOSUB, ON ERROR GOTO 83,84
F. Display Programming 84

F.l. BEEP 84
F.2. CURSOR 85
F.3. CLS 88
FA. GCURSOR 88
F.5. GPRINT 91
F.6. POINT 94

G. Debugging 96
TRON. TROFF. Arrow keys 96

H. Hexadecimal Numbers & Boolean Functions 98
H.l. Hexadecimal Numbers " 98
H.2. AND Function 98
H.3. OR Function 99
HA. NOT Function 99

I. Halting Program Execution 100
STOP. CONT 100

J. Mode Control 100
LOCK, UNLOCK 100

VI. Expanding the PC-1500 101
A. Printer/Cassette Interface ICE-150) 101

A.l. Connecting the Computer to the Interface 101
A.2. Power (Recharging the Batteries) 103
A.3. Connecting a Tape Recorder to the Interface 103
AA. Loading the Paper 105
A.5. Replacing the Pens 106

B. Using a Cassette Recorder 108
B.l. Tape Recorder Operation 108
B.2. Saving Programs on Magnetic Tape (CSAVE) 108
B.3. Loading Programs from Magnetic Tape (CLOAD, CLOAD?) 109
BA. Saving and Loading Data Using Magnetic Tape (PRINT#, INPUT#) 110
B.S. Editing Programs on Magnetic Tape (MERGE) 112
B.6. Chaining Programs. (CHAIN) 113
B.7. Using Two Tape Recorders 114

C. Using the Printer 116
C.l. CE-150 Printer Specifications 116
C.2. TEST Command 116
C3. Printing Calculations 117
CA. Printer Modes 118
C.5. Listing Programs 118
C.6. Programmable Printer Control 120

CSIZE 120
ROTATE 120
COLOR , 121
LF 121

6

LPRINT 122
LCURSOR 123
TAB , 124
SORGN 124
GLCURSOR 124
LINE 125
RLINE 127

VII. RESERVE Mode 129
A. Defining and Selecting Reserve Keys 129
B. Identifying Reserve Keys 130

Reserve Key Identification Template 131

VIII.' Beginning Program Execution 132
A. The DEF Key 132

A.1. Running DEFinable Programs 132
A.2. Pre-Assigned Keywords 132
A.3. The AREAD Statement 133

B. Automatic Program Initiation 134
ARUN 134

C. Comparison of Initiation Methods 134

IX. Appendices 137
A. Abbreviations 138
B. Battery Replacement 142
C. ASCII Character Code Chart 144
E. Error Messages 145
F. Further Reading 151
O. Order of Expression Evaluation 151
X. Command Comparison: PC-1211 vs. PC-1500 153
Z. Command Reference Table 155

Name label
Write your name on the attached name label and stick it on the back of the Computer.

7

-=--=-O~-=-=---=--=;[f~--=.::..A~IJ[?_D~_@@_~_~_~_~_O~_@__)

(No Water Necessary)

This section is devoted exclusively to a select group of people (the authors included) whose
inquisitiveness outweighs their patience (and perhaps their common sense). For those of
you who absolutely must DO SOMETH ING with this miracle of modern electronics, we present
a simple programming exercise. (WARNING: The timid or faint-of-heart are instructed to
proceed to Chapter 1; Getting Acquainted, for a more thorough and leisurely introduction to the

SHARP PC·1500).
Before you proceed, one further caution is in order. It is important to follow all of the listed

steps in the given order. Contrary to popular opinion, computers are not "super-brains" and do
not have the average human's ability to "figure out" what you desire. The PC-1500 simply awaits
your instructions and performs them. Are you ready? Good, let's begin.

Example 1
First, find the key marked "ON" in the upper right corner of the keyboard. Pressing this key

will cause the sleeping electronic genie to awaken (don't expect a puff of smoke!). The display

portion of the computer should be similar to the illustration below:

I>
DEG PRO

Press the ~ key (on the far right side) until the abbreviation PRO appears in the upper
portion of the display. (If you press the key too many times, just press it again until the desired
result is obtained). The SHARP PC-1500 is ready to accept the series of instructions which make
up a computer program.

Enter the following keystroke sequence:

Notice that as you press the IENTER I key, the computer will modify what you have typed in.
The display should now look like this:

10:A=1
DEG PRO

Note: Throughout this manual we will use ~ for the number zero, so that you can distinguish
between the letter 0 and the number ~.

Continue by pressing the following keys. Do not be alarmed when each line disappears as
you type its successor.

m w m rn OD CD [TI rn IENTER I
rn w rn @] rn rn m IENTER I
m w CID [Q] rn [Q] moo IENTER I

At this point, your first program is complete. Now you must tell the computer to "execute,"
or carry out, the instructions it contains. This process is known as "running" the program and
is performed in the RUN mode (logical huh?). Press the ~ button once again and the letters
PRO are replaced by the letters RUN at the top of the display.

One last step: type in the letters 00 OD (J[) and pressl ENTERI.

8

Congratulations! Your first BASIC program is now running. Your instructions are being
followed and the computer is busy listing all the positive odd numbers, in order.

"So," you say to yourself, "I'm a genius. But when will it stop?"
Well, unfortunately, without your intervention or battery failure, this particular program

will never finish. To see why, let's review our program:

10 A= 1

20 PAUSE A

30 A=A+2

40 GOTO 20

The effect of the line numbered 40 is to cause the computer to re-perform all lines after the one
numbered 20. This includes line 40 which, of course, tells the computer to re-re-perform lines
20, 30, and 40 and so on forever. This repetition without end is known in computer jargon
as "looping".

Our program is stuck in an "infinite loop" and only you have the ability to stop this tragic
expense of battery power. To do this, press the [Q[J key. Since the PC·1500 is already on, you
are actually selecting the BREAK function. Don't be alarmed. Despite what the name seems to
indicate, this is not a self·destruct key. As a matter of record, you cannot, in any way, hurt or
damage the computer merely by pressing keys, so feel free to experiment!

If you have pressed the BREAK key, a message similar to the following is visible in the display
window:

DEG RUN

This informs you which instruction was being "executed", or worked on, when you interrupted
the computer. Press the BREAK key once more, and the computer awaits your next instruction:

DEG RUN

For those of you who just remembered that you left the tap running at home, this is a good
stopping point. (Before leaving, please press the [QEEJ key to conserve batteries.) Others of you
are already becoming programming addicts and will want to continue your education with our
second example. (We hereby waive responsibility if you're late for dinner).

Example 2

To begin our second program it is necessary to enter the program mode by pressing the MODE
key until the letters PRO (short for PROGRAM) replace the letters RUN at the top of the display.
The PC-1500 will now let us submit a new program or modify an old program. Because our new
program will not build on the instructions of our old program, we must clear those instructions
from the computer's memory. To do this, type in the word NEW and press ENTER. After a
pause the> character (called a prompt) will return.

Type the following keystrokes to enter the first line of the program:

OJ 00 CO 00m QD CD I SHIFT I~m CO [§] CD ISPACEI

[§] CO W m ISHIFT I [2] ISHIFT I~ I SHIFT I rn rn IENTER I

9

Notice that pressing the ISHIFT I key followed by a key which has another character inscribed
above it, will enter the uppermost character. The shift key permits two characters to share the
same button, and is sometimes called the "second function" key. Thus, in the first line of our
program (line 10 above). a I SHIFT I keystroke followed by a rn causes a OJ (semi colon)
character to be entered. The entire line is stored in the computer as:

DEG PRO

l '_71 aalt"F'I_IT VLI',=_',l- ~'I'~I-~VCI'-l~Jo 1 ':' ,. ,:~, :::.:' ~I

In this manual we will illustrate the selection of the second function character with the shift
key and the character desired. For example, the line numbered 10 above will be shown as:

m w CD 00 m OD rn ISHIFT I~ [0 CIJ m rn (SAACE]

m CD W [TI ISHIFT I rn I SHIFT I~ ISHIFT I OJ IT] IENTER I

Complete the entry of our second program with the following keystrokes:

rnrnCDmIT]ISHIFTI~~rnwwrnwwwIENTERI

rnwmW[K)CD~mrnwIT]IENTERI

rn []] m IT] OD m [TI CD I SHIFT I w CD rn CD IENTER I
W 00 00 [TI CXJ rn CD IENTER I
w w [[] [TI IT] m rn ISHIFT I 0 IT] 00 [Q] IENTER I

Our second program is now stored in the PC-1500's memory. Do you remember what must be
done next? If you said "Run the program" you are well on the way to programming competency.

Return to the RUN mode (HINT: use the MODE key) and type in the word RUN. Press
IENTERI to begin "execution" (another word for running) of our second program.

Is the computer interrogating you in the following manner? (If not, return to the PROgram
mode and re-check your typing).

[LHn
DEG

.-. I """E'-'.:1 .::.. :'_
RUN · I

Good showl Our program is asking the user (you) for information necessary to perform the
task that we, as programmers, instructed it to perform. Recall the first line of our BASIC program
(which you so kindly typed in for us);

DEG PRO

l r_'1
aalt· IFII_IT VLII.:_',T ~I~r:-~vahJo 1 ':' ,r::_:~:' , H

The instructions within this line are currently being followed by the computer. The result is
that the computer is waiting for you to "input" (type in) some information.

This program will print a list of numbers and their squares (the number multiplied by itself).
First, however, it asks the user how many numbers and squares to print (LIST SIZE?). The user
(you again) responds by typing a number and pressing (you guessed itl) IENTERI.

Type rn and press IENTER I.

10

Watch closely as pairs of numbers appear briefly on the screen. The second number in the pair

(on the right) will be the square of the first. Eight pairs of numbers will be displayed because

that is what you asked for when you responded to the program's question.

When the prompt returns, re-run the program (type RUN, press IENTERI) and make a different

response to the "LIST SIZE?" question. Run the program several times experimenting with
different list sizes. You are experiencing one of the important advantages of programmable

computers; they can perform a tedious task repeatedly, varying it slightly each time in response

to the input.
Re-run the program once more but this time enter a zero for the list size. What happens?

Yes, the program ends without having produced a list. Although this may seem odd, the PC-1500

is simply following our instructions.

This illustrates why the computer is such a powerful tool. It can be programmed to follow

different sets of instructions and process the variety of information it is given. Because of the

instructions in line 20, if the user's input is zero (or less) the computer skips over the computa­

tion of the list and goes to the end of the program. In effect, it has made a decision based on the

user's request. As a programmer, you control what decisions are possible and when they are made.

Thus, the full power of the computer is available to you to solve your specific problem in the

manner you think is best.

(I1_@_~_W_O~_@_Ih_ll©_@_QJJ_~_O~_Lf_~_@)

After you unpack your Sharp Pocket Computer (hereafter we'll call it SHARP) and admire

your handsome new friend, you might wonder what you're staring at. Let's examine SHARP:

Display Battery function indicator

Mode key

1
, ~I

150: C=.f<A:t:A+B:t:B-2:t:A:t:B:t:COS ...~
Reservable--l1b===~~======S=~====~~~~rr=1=="""=~_~==:J=~fj--Shiftkey

keys ~ -1 0 0 0 0 0 0 I -- 'iEJ 'K'" n-Off keys

?

II • D iii a a II a EJ II m (]] []J ~-4-Clear key

aUlilmBIII .. _" mmmm
lIa •• IIII m0 3 GG

_~~_m EilI1l1il11 [tJ[t! + @) 8 @)[iJ G
-CSmall key Entry key

Numeric keys

Alphabetic keys

We will describe the display in a moment. First, even before you turn on SHARP, notice
several important features of the keyboard:

11

A. ON AND OFF KEYS

Obviously these keys turn the power on and off. SHARP, to conserve its battery, will auto­

matically shut off if nothing is keyed in for a period of about seven minutes, unless a program is
being executed. Observe inscribed above the @ill key the phrase BREAK. The @ill key can be
used to BREAK, or interrupt, the execution of a program. This function is described in more detail
later in this manual.

B. ALPHABETIC KEYS

The Alphabetic keys allow the computer user (you) to give instructions and enter data. In addi­
tion, these keys may be used to designate "storage areas" within the computer's memory into
and from which you will be able to save or retrieve data. This use will be covered in the section
on variables. Lower case letters are available through the use of the ISHIFT I and ~ (SMALL)
keys (described below).

C. NUMERIC KEYS and ARITHMETIC OPERATION KEYS

With these you enter numbers for calculation. The [±], c:::J, rn, and CZJ keys tell
SHARP to add, subtract, multiply and divide, respectively. The W key allows the entry of
numbers in "scientific notation". The use of this notation and other sophisticated functions are
described in the chapter on Advanced Calculations.

D. SHIFT

This key delivers the secondary functions inscribed above many non-alphabetic keys. For
instance, to type a colon, press ISHIFT I and then the rn (asterisk) key. When the SH IFT key is
followed by an alphabetic key, the lower-case letter is displayed. (NOTE: In the SMALL mode,

the SHIFT preceeding the alphabetic key will produce an upper-case letter).

When the SH IFT key is activated, the word SH IFT appears in the upper left corner of the
display. The shift mode is only active for one keystroke at a time.

The six keys at the top of the keyboard, directly below the display window, are called

RESERVABLE KEYS. Using the shift in a manner we will decribe later on, you can assign
frequently typed commands or other operations to these keys.
NOTE: If you press the ISHIFT I key by mistake, press it again to cancel.

E. LOWER·CASE LETTERS and the SMALL KEY

The ~ key allows you to specify lower case for all alphabetic keys. If you do not specify
the SMALL mode, SHARP will select upper-case for you each time you press an alphabetic key.
(We call this the "default" mode, meaning the way in which the machine operates unless you tell
it otherwise.) You can type individual lower-case letters by pressing the ISHIFT I key before the
letter.

The ~ key may be used to effect the SMALL mode. In SMALL mode lowercase letters
result from pressing an alphabetic key and individual upper-case letters are displayed by pressing
the ISHIFTI key first. When the computer is in SMALL mode, the word SMALL will appear on the
top portion of the display window. Once you have placed the computer in SMALL mode, it will
remain in this mode until you press the ~ key again.

NOTE: We recommend that you restrict your use of lower-case for the moment. This is because

SHARP only recognizes instructions in upper-case letters. When you learn to program, you
will find lower-case letters handy.

12

F. THE DISPLAY

Press ON. The "glass window" part of the computer is called the "display." It looks something
like this:

DEG PRO

On the display you should see an > (called a "prompt"). several words or abbreviations, and
a dot (indicating that the battery is functioning). Do not be concerned if the specific abbrevia­
tions appearing on your display are not those of our illustration. These symbols change as you
operate SHARP.

G. The CURSOR and the PROMPT

At the far left of the display, find the prompt symbol (»; it prompts you to talk to SHARP.
When the "prompt" appears it means SHARP has no immediate plans and awaits your bidding.

Type a letter of your choice. It replaces > at the left of the display, while to the right of your
letter appears a _ (underline symbol). This is a cursor. As you press each key, the cursor inches
its way across the display, indicating where the next symbol you type will appear. Type your name
and note the movement of the cursor.

If you type more than 25 characters, the limit that can be displayed at one time the entire line
shifts left. (Try it!). Characters "pushed off" the screen are not lost: they remain in SHARP

as part of the typed line, up to a maximum of 80 characters for any single line. We will see how
to "recall" and how to change these characters in a later section.

H. CLEAR

(The red [gJ key in the upper right corner)

Push this button and you CLear the display of its contents. Use it to erase the characters
that you just typed in. Notice that the prompt has returned, indicating that the computer is
again waiting for your commands.

The clear key is also used to cancel an incorrect command. (See the section on Error messages
below).

J. ENTER

As you type into the computer, the letters or numbers appear on the display. SHARP will take
NO ACTION, however, until you signal that you have finished typing (after all, it can't read your
mind). This is done by pressing the ENTER key after your other keystrokes. At this point, the
computer will scan the characters you have typed for correct form. Certain errors, but by no

means all errors, will cause your input to be rejected.

REMEMBER: Press the IENTER I key each time you wish to enter an instruction or item of data
into the machine.

J. ERROR MESSAGES

Press the following keys:

rnrnrnm
Now press IENTER I.

The answer should be displayed. Three, right? No? You get "ERROR 1" as your answer?
Is your computer defective? Never! There's a mistake in the form of the command. "ERROR

13

1" is an error code which tells you that you have incorrectly performed a calculation. (For the
curious, a complete list of error messages is included as an appendix). We'll take the blame for
this first error and in later sections we'll show you how to use other keys to correct an erroneous
command. For now, you may use the CLear key to erase the error message.

K. BATTERY FUNCTION INDICATION

When this dot disappears, the time has come to rejuvenate SHARP by replacing its batteries.

See Appendix for instructions.

RUN

HATCAN THE

Battery function indicator------

~
~---------------=----------
I THE

L. RCL (Recall) key

This key is used to "call up" or retrieve a previously stored statement or phrase in the Reserve
Mode. To accomplish retrieval of a Reserve Mode entry. perform these steps:

First enter the Reserve Mode by depressing the Reserve Select key (~) to select the group I, II,
or III the (RESERVE SELECT KEY is located immediately to the left of the RCL (Recall) key).

Now depress the RCL (Recall) Key and the Reserve Key previously assigned. If you have
forgotten your previous assignments, simply follow the instructions in paragraph B on page 130.

)

Match each item in column A with one from column B. (Answers on bottom of page).

HINT: Column B contains some silly possibilities.

A B

a) SHIFT key
b) The Display
c) The Cursor
d) ENTER key
e) BREAK key
f) CLEAR key
g) The Prompt
h) The redQIERRING key

1) A malcontent given to constant swearing.
2) A key which cleans the display window and erases

any results from previous computations.
3) A key which selects one of 2 characters which share

the same key.
4) Ain't no such key.
5) A character, appearing in the display. which informs

the user that the computer awaits his/her command.
6) The key which signals the computer that the

User is finished typing.
7) A key which interrupts a program in the process

of computing.
8) The name of a rare tropical fish.
9) The character, on the display, which indicates where

the next typed character will appear.
10) The glass window on which information appears.

14

(
Actually, this chapter is probably misnamed; learning to use the PC-1500 is not nearly as

shocking as plunging into a pool of water. However, it does require that you approach the com­
puter without fear. As we have said before, you cannot hurt or damage the computer merely by
pressing the keys.

In this chapter we will explore the fundamental features of SHARP upon which programs and
more advanced calculations are based. Take the time necessary to work through the examples in
each section. A good understanding of the basics will allow you to exploit this machine's full
potential.

Although we do not recommend it, if you feel that you are sufficiently advanced, you may
skip ahead to the summary at the end of this chapter.

(£, (i"i@]:§)

Let's begin with a key we have been ignoring until now. At the right of the keyboard find the
very important button labelled MODE. Press it repeatedly. Notice, each time you press the key,
the changes in the abbreviations at the upper right. Changing the machine's mode in this way
can be likened to shifting gears on a car. As each new.mode or gear is engaged, machinery which
appears outwardly unchanged performs differently. Like a car, SHARP must be placed in the
proper mode to function according to plan. And, also like a car, when you attempt to operate
SHARP in an improper "gear", the computer will quickly notify you of your mistake.

By repeatedly pressing the MODE button you will be introduced to the two most important of
SHARP's three modes: RUN and PROgram. A third mode, RESERVE, is activated by pressing
the SH 1FT key before the MODE key. Later chapters of this manual will describe how each of
these modes contributes to the smooth running of SHARP. For now, remember that in order to
use SHARP as a calculator, you must be in the RUN mode. Later, in the PROgram mode, you
will write and change programs. With the RESERVE mode you can assign frequently used
commands to a single key. This is explained in greater detail in Chapter 7.

Note that the first time you turn the computer on after inserting batteries, it will settle into
the PRO mode. At other times the computer will come on in the mode in which it last operated
before being shut off.

With SHARP set in the RUN mode, let's test fundamental mathematical computations. It is
necessary before each calculation to press [QJ . This clears the display of any previous data
which might interfere with a new calculation. Find answers to the following simple problems:

Input Display

mmW IENTERI 7
mEJw IENTER I 3
mC2Jw IENTER I 2. 5
mrnrn IENTER I 1 0

NOTE: Do not type an equal sign. Remember from Chapter I that it is the ENTER key which
informs SHARP that you have finished typing and wish to have your command or calculation
performed.

15

(-.....:;@,;;..;:.......::~=.;;..::'=-=~=-='=-=-=-.~~o~)

You can utilize an answer from one calculation in a following calculation by proceeding
directly to the second calculation. (Do not press CL between calculations). Thus, if you are
balancing a checkbook, you will operate SHARP in this fashion:

Input Display

161.16 - 47.50 I ENTER I 113. 66

- 12.33 113.66-12. 33

IENTERI 101.33

As you will observe, the result of the first calculation jumps to the left of the display as you
begin the second calculation.

NOTE: DO NOT type dollar signs or commas when entering numbers in calculations. These
symbols have special meaning in the BASIC language (and therefore to SHARP).

Other operations can be performed similarily. Try these:

Input Display

5+3 I ENTER I 8

8+3-1 I ENTER I 1 0

1.0* 3 - 1 IENTERI 29

29/3 - 1 IENTERI 8. 666666667

Imagine you have presented your computer science teacher, Mr. On off, with two apples. You

have remaining an inventory of five apples, and you wonder, "How many apples would I now
have if I hadn't been so generous to Mr. On·off?". To find the answer, you might imagine the
subtraction from inventory negated; that is, you would subtract the subtraction. Type into
SHARP: 5 -- 2 IENTER I • Seven would be your hypothetical inventory. Try these similar calcula­
tions with negatively signed numbers:

5*-2

5+-2

5/-2

-5-2.3

-5+-2

-5/-2
16

REMEMBER: To press (gJ between calculations to CLear previous results.

(.....::§,=--~=o=...:'O=~O::........::~:::....'==:...::.'~=.::::o=)

You can string together a sequence of calculations before asking SHARP for an answer. For
example, you and two friends, Hob and Nob, wish to share 5 apples twice a day for a week. How
many apples should you buy to last the week? 5 apples IT] 3 friends rn 2 per day rn 7
days:

Keystrokes Display

23. 33333333

(Buy 24 apples and a parrot, to whom you can feed the extra 1/3 apple). Run the following cal­
culations, (but this time invent your own stories as to what they represent):

Input Display

5* 2 - 3.675 t ENTER I 6. 325

5/3*6.2+7-47 IENTER I -29. 66666667

(,-=~:..::..O--.:~=--.:®?:::..:::.......~::....:.·'-=..=..::...::~==-)

A problem which emerges as we investigate compound calculations is that of priority. For
instance, the expression 5 - 3 / 4 can be read two ways: (5 minus 3) divided by 4, in which case
the answer is .5, or 5 minus (3 divided by 4), in which case the answer is 4.25.

Located in the first row of keys are the parentheses which you can use to clarify such
ambiguities. Run the following calculations:

Input Display

5 -3/4 !ENTERI 4. 25

5-(3/4) IENTER I 4. 25

(5-3)/4 IENTERI o . 5

SHARP is predisposed (has "default" priorities) to perform some calculations before others
(for a complete listing of the order in which SHARP calculates, see Appendix 0). Division and
multiplication will be carried out before subtraction and addition, unless parentheses are used to
direct a different ordering. Thus SHARP is built to interpret the first equation above as being
equal to the second rather than to the third. To make sure that the answer SHARP gives you is
the one you need, use parentheses to indicate the proper order in which it should perform calcula­
tions.

SHARP can interpret several layers of parentheses as in this problem:

17

Input Display

((6 - 4) /2) *(((3 - 1) /4) *6) IENTER I 3

The equations with in the innermost set of parentheses will always be calculated first.

REMEMBER: When in doubt, use parentheses to clarify the order of your arithmetic operations.

SHARP will allow you to compare two values or equations and will indicate to you the result of
the comparison. This ability is basic to designing programs which make decisions. The manner in

which this is done will be recognizable to students of the "New Math" as an inequality (don't
despair if you weren't raised on New Math; the author wasn't either).

An inequality may be thought of as a comparison which is either true or false. For instance,
the statement "six divided by three is equal to two" is a comparison which happens to be true.

On the other hand, the statement, "six divided by three is greater than five" is a false comparison.

Computers and mathematicians use the following symbols fur the possible types of com­

parisons:

<
>

<=
>=
<>

less than

greater than

equal to

less than OR equal to

greater than 0 R equal to

not equal to

Thus, we can restate the above inequalities symbolically, as: 6 /3= 2 and 6/3> 5 respec­

tively.

Given an inequality, SHARP will determine whether the comparison is true or false. In
keeping with current computer design practice, SHARP will indicate a true statement with a 1 and
a false statement with a 0. For example if you type:

6/3= 2

SHARP will respond with a 1 (for true). Typing the sequence:

6/3>5

will elicit 'a response of 0 (for false).

Try the following tests of SHARP's judgment (be sure you are in RUN mode):

18

Keystrokes Result

rn I SHIFT! W rn IEHTER! fiJ

rn I SHIFT I w rnlEHTERI 1

rn rn rn I SHIFT I [3] rn rnrn IEHTER I 1

OJ rn i SHIFT 1[3] ISHIFT I W OJ rn fiJ

rn0 rnlEHTERI 1

rn I SHIFT I [3] 0 rn IEHTER I 1

rn rn rn rn I SHIFT IW 0 OJ 00 W CZJ rn [±] rn [EHTERI 1

As you may have observed, the equations which are compared may be as complex as necessary
(the only limit is the restriction of 80 symbols to a line).

Here is a very simple problem to illustrate a practical use of inequalities:

Nob enters Nails 'n Stuff hardware store. He finds that cement comes in 4,8, and 12
pound bags. The money he has brought with him will buy either two 12 pound bags or
three 4 pound and one 8 pound bag. He wonders in which case he will get more cement.
He asks SHARP if

2 *12> (3'*4) + 8

SHARP replies 1; Nob buys two 12 pound bags.

Experiment with inequalities applying them to your own problems.

Most humans (except us genius-types) have a tendency to make mistakes. Recognizing human
fallibility, the designers of the PC-1500 have incorporated several features which facilitate changes
and corrections.

DEL

H.1. Left Arrow/DELete key rn
By now, several of you may have discovered the Left Arrow key at the lower right side of the

keyboard. This key acts like the backspace key on most modern typewriters; it allows you to
move back over previously typed characters.

In the RUN mode, starting with a clear display (Le. with the prompt showing) type in the
following characters:

CD OD m !SPACE! w IT] (J[) !SPACEI CD OD m

!SPACE! OD IT] CD

19

The display should appear as follows:

[THE CAt"j
DEG

THE
RUN

Press the Left Arrow key once and notice the manner in which the cursor changes. This

"Flashing grid" form of the cursor allows you to see the character at the current cursor position.
Press the Left Arrow key repeatedly (or hold it down) until cursor is positioned over the N. (If
you accidentally pass the N, move the cursor forward again with the Right Arrow key).

Type a T. The T replaces the N and the cursor moves forward. This should not be surprising
if you remember that the cursor indicates where the next character will be placed.

Type these characters:

Now displayed is:

[THE CAT
DEG RUN

~IJ ITH I r'~

As the display illustrates, characters which have been typed over are gone forever.

In addition to backspacing, the Left Arrow key has a second use, the DELete function whose
abbreviation is inscribed above the key. To delete a character, place the cursor on the doomed
character and press ISHIFT I [QE) .

Let's try it: move the cursor back to the Wand press the sequence ISHIFT I [QE) four times.
The display now shows:

DEG RUN

THE CAT I r'~ HAT

INS
H.2. Right Arrow/INSert key [E]

As we have already seen, (sorry to ruin the surprise) the Right Arrow key moves the cursor
forward without erasing characters. Like the Left Arrow, the cursor will move repeatedly if the
key is held down.

Move the cursor to the end of the line.

The second function for the Right Arrow key gives us the ability to INSert characters within
a typed line. This feature is handy for those of us who tend to forget little things (like letters and
words).

Move the cursor back to the H in HAT. Type the sequence SHIFT INS four times and watch
the present characters shift to the right. The new box-like characters which have appeared can be
thought of as "placeholders." These "place holders" can be filled with new information.

Type:

20

Presto! You have just inserted a word. (I wish my typewriter could do this).

H.3. RECALL FUNCTION

Up to now we have been discussing ways to correct statements which had not yet been entered
(that is to say, you had not pressed ENTER after your keystrokes). Once you press ENTER,
however, SHARP immediately attempts to perform your calculation. If the computer is
successful, the result replaces your equation on the display. The equation, however, is not lost
and may be recalled (redisplayed) by pressing either the Left Arrow or the Right Arrow key.

Clear the display and type in the equation of your choice. Press ENTE R to compute the result.
Recall your equation. Note that to see the result again, it is necessary to re-eompute the equation
(using the IENTERI key).

Fortunately, the Recall function will also work if SHARP encounters an error while trying to
evaluate (make sense of) your input. This allows you to recall and correct the erroneous equation
using any of the editing features you have just learned.

To test this, enter the following incorrectly phrased expression:

45 * 63 / * 2 IENTER I
t

When the error message appears (ERROR 1) press either of the Arrow keys to recall the
expression. You should see the Flashing·grid cursor positioned over the second multiplication
symbol (asterisk). This is SHARP's way of indicating the point at which it became puzzled (and
for good reason in this case). From here you may proceed to make any correction you deem
appropriate.

The ability to work abstractly through variables is one of SHARP's most powerful features.
Variables may be thought of as a group of little boxes, each of which may be filled with a single
item of data such as a number or a name.

You might remember variables from high school algebra. You learned (at least you were
taught) that if 5A = 30 then A must be 6, but if 5A = 35 then A is equal to 7. The A in this case
is a variable which holds a single number (not always the same and therefore a "varying" number)
called the "value" of the variable. The ability to use a letter (such as A) in an equation instead
of a specific number is very useful. Let's see why with the following example:

General Duffer has his heart set on purchasing a set of Deluxo chrome·plated golf clubs.
The set consists of 5 clubs at $12 each, a bag at $21.99 and three balls as $1.56 each. The
local Army PX is offering this set at a 10% discount but they have an $8 polishing and
delivery charge. Five Finger Discount Bernie's Golf Goods is offering the same set with a
5% discount and free delivery.

To compute which is the better deal, the General decides to enlist the aid of his SHARP
PC-1500. The General calculates the basic cost of the set and saves this result into a variable
G (for golf, not general):

G = (5 *12) + 21.99 + (3 *1.56) IENTERI

The result is displayed and can be recalled from storage by entering the name of the variable;
W IENTERI

DEG

21

RUN .I'-1'- .--t.:Itl. tl f

Now the General calculates the actual purchase price at the PX:

G - (G* .10) + 8 IENTERI

DEG

and the purchase price at Discount Bernie's:

G - (G* .05) IENTERI

DEG

RUN

RUN

Clearly, Discount Bernie's has the better bargain. (Clever readers may have noticed that the
General could have worked this problem using SHARP's unique recall feature (see Chapter
2), though not quite as easily).

There are several lessons to be learned from the preceeding example ...
Observe that the General's first calculation had the following form:

variable-name = expression

An instruction with this form is known as an Assignment Statement. It is important not to
confuse an Assignment statement with an inequality. Unlike Assignment statements, inequalities
are not used separately, but form parts of other programming instructions.

The Assignment statement instructs SHARP to store the reSUlt, obtained by calculating the
expression, in the memory location associated with the given variable name. Thereafter, using
the name of the variable (G in our example) is just like using the result itself. Notice also that a
variable may be used as many times as needed in the same calculation.

Variables can be used for other neat tricks, too. The value of one variable can be assigned to
another, as in the statement:

H = G

which will copy our previous result into H. G has not been altered; the same result is now stored
in two different variables.

Variables which hold numbers can be incremented or decremented in one statement as in this
example:

G = G+5

This instruction will cause SHARP to recall the value of G, add 5 to that value, and store the
new value back into G. This capability is useful for all kinds of calculations:

22

The cost of a widget is stored in variable X. Assuming a 6.5% sales tax, what is the
purchase price of the widget? :

X=X*1.065

Of course, we could have .written this example as P = X* 1.065 in order to leave X
unchanged. If we had stored the tax rate in a variable T, we could have said X = X *T or

P = X*T.

Until now, we have been using single letters as variable names. This provided us with 26
variables (A through Z). In actuality, SHARP allows the use of over 950 variable names for single
numbers. An additional group of over 950 variables may be used to store up to 16 characters each.

Finally (as if that weren't enough). using more advanced techniques, users may create variables
which hold as many numbers or characters as desired, limited only by the amount of memory
available in the computer.

The naming-scheme for variables is simple and easy to learn. Names of numeric variables
(ones used to hold numbers) may be chosen using the following rules:

The name may be a letter; A through Z.
The name may be a letter, followed by a single digit (0 through 9) or by another letter.

Thus, the following are valid names for numeric variables:

S, 01, TX, MM, Z9, RO, E.

NOTE: Due to conflicts with abbreviations which have other meanings in the BASIC language,
SHARP does not allow the use of these variable names: LF, IF, LN, PI, TO.

Names of character variables (those used to hold characters) follow the same rules as above
except that the name ends with a $ (dollar sign). The $ alerts SHARP to the fact that the variable
holds character information. The following are examples of valid character variable names:

T$, P2$, T7$, AA$, YR$, X$, ZH$, B5$.

NOTE: Due to conflicts with words which are part of the BASIC language, SHARP does not allow

the use of these variable names: LF$, IF$, LN$, PI$, TO$.

It is important to understand that a variable A and a variable A$ are two different variables, the
first one can only hold a number and the second one can only hold characters. As we shall see
later, SHARP's BASIC includes instructions to convert characters to numbers and numbers to
characters.

To store characters in character variables we use a variation of our friend the Assignment
Statement:

character-variable-name

As an example type the following:

D$ = "DAVY JONES"

"characters"

Now recall the contents of D$ by typing [[] ISHIFT Irn IEHTERI

DAVY JONES

23

Notice that the space between Y and J was stored and that the" (double quote) characters
were not. The double quotes serve as "delimiters," a guide to indicate what other characters
will be stored. Any character (including spaces), except the double quote itself, may be stored.
This sequence of characters enclosed by double quotes is called a character "string" and character
variables are often referred to as "string variables." Each character variable can hold up to 16
characters. Some caution must be used in order not to exceed this limit or information will
be lost. This is demonstrated by the following assignment which unintentionally normalizes
John's eating habits. Type:

F$ = "JOHN EATS BUTTERFLIES"

Now recall the information: m ISHIFT I rn IENTER I. Some change I

One final point to remember about variables: they have the memory of an elephant. Informa·
tion remains stored in a variable until:

1) Another Assignment statement is executed for the same variable.

2) A NEW or CLEAR command is given.

3) A program is run using the RUN command.

4) The computer's batteries are changed.

The value of a variable is even retained when the power is turned off! Test this by turning SHARP
off, then on. In RUN mode, ask for the value of G (Type W IENTERI). Impressive, eh? As
you begin to program in the next chapter, you will find variables are indispensable.

(......::d1::::.....-:W:;:.::@::-::...::!W="f'l=A>::...;:O..::-OU=~=.=·I.::...:~=.=.::....:.frful=.'=~=='=D==-)

Congratulations! If you have perservered to this point, you now know the fundamentals of
the SHARP PC-1500 well enough to perform a wide variety of calculations. Because the PC-1500
is so versatile, each reader will find many uses for it in his own fields of interest. No matter what

your application is, however, you will eventually want to learn programming in order to fully
exploit the power of this amazing machine.

At this point you have a choice. For those whose hearts have quickened, whose breathing is
more rapid at the thought of programming (and for anyone not yet asleep), we request that
you to go back and read Chapter 0, integrating your new knowledge with the information there.
Then proceed to Chapter 3.

Other readers, who have an immediate need to use such features as scientific notation and
trigonometric functions, may proceed directly to the chapter on Advanced Calculations.

(~)

1) Modes - The SHARP PC-1500 operates in one of three different modes: RUN, PROgram, and
RESERVE. Each change in mode causes a slightly different change in internal function,
analogous to shifting gears in a car. The RUN mode is for calculations and is the mode in which
you must "run" (execute) programs. In the PROgram mode, all writing and editing (additions
and corrections) of programs is performed.

2) Calculations - SHARP performs common arithmetic calculations in the RUN mode. The CL
(clear) key should be pressed before each calculation to clear the results of a previous calcula­
tion. NOT pressing the CLear key between calculations allows a series of calculations utilizing
the result of the immediately preceeding calculation.

24

3) Special Characters - The $ (dollar sign) and the ,(comma) have special meanings in BASIC
and may not occur as part of a number within a calculation.

4) Negative Numbers - are denoted by preceeding the number with a - (minus sign) as, for
example: -5 + 2 => - 3

5) Compound Calculations - follow common algebraic laws. Parentheses are used to indicate the
correct meaning of a given expression. Complete information on the order of expression
evaluation is given in Appendix O.

6) Inequalities - Inequalities using the symbols <, >, <=, >=, and < > (for less than,
greater than, less than or equal to, greater than or equal to, and not equal to) will return 0for
FALSE and 1 for TRUE.

7) Left Arrow key - The Left Arrow key ~ acts as a non-destructive cursor backspace. Hold­
ing this key will cause automatic repetition. The Underline cursor changes to a Flashing grid
when placed over a previously typed character. Pressing SHI FT followed by the Left Arrow
key invokes the DELete function, which deletes the character on which the cursor is posi­
tioned.

8) Right Arrow key - The Right Arrow key moves the cursor forward non-destructively. Holding
this key down will cause automatic repetition. The sequence SH IFT, Right Arrow will invoke
the INSert function; inserting a "place holder" character at the current cursor position. This

character can then be overwritten with the information to be inserted.

9) Recall function - After ENTER is pressed, and the result of a calculation is displayed, the
original equation may be recalled by pressing either the Left Arrow or the Right Arrow key.
At this point, changes may be made and the modified equation re-entered. The Recall function
will also work for any non-programmed expression which produces an error. In this case, the
cursor will be positioned at the point of error detection.

10) The Use of Variables in the RUN mode greatly increases the PC-1500's computing power and
provides brevity in complex expressions.

11) Assignment Statements using the forms:
variable-name = expression
character-variable-name = "characters"
allow the storage of a single number or a string of up to 16 characters, respectively. Any
printable character may be used within the string except a double quote.

12) Variable Names for numeric variables are:
1. A letter (A through Z)
2. A letter followed by a digit (0 through 9) or another letter.
Character variable names follow the same rules with the addition of the $ (dollar sign) as a
suffix to all names.

13) Exceptions - The following are exceptions to the naming scheme and may not be used as
variable names: IF, LF, LN, PI, TO, IF$, LF$, LN$, PI$, TO$.

14) Life-span of Information - Information within variables is retained until:

1) A CLEAR or NEW commad is given.
2) A program is run using the RUN command.
3) Another Assignment statement is executed for the same variable.
4) The computer's batteries are changed.

Turning the computer off does not affect values stored in variables.

25

The art of programming has been needlessly shrouded in a veil of mystery for so long that most
people associate it with wizardry or mathematical genius. The fact is that no special talent for
pulling rabbits out of hats is required. Nor is it necessary that you be adept at solving partial
differential equations. Your greatest assets will be your patience, your logical reasonir.g abilities,
your attention to detail, and your eagerness to learn. A willingness to accept challenges is also
useful (we won't kid you: at times programming is very challenging, that's the fun of it).

Programming is an art, and as such requires a little skill, a little training, and a lot of practice.
It is not our intent in this manual to make a seasoned programmer out of you. We will familiarize
you with the basic operations and concepts of programming. To be a competent programmer
requires more, just as good driving involves more than knowing how to steer and shift gears.

Many good books on programming already exist and we strongly urge you to patronize you
local computer dealer and library. Several good books on programming in general and the BASIC
language in particular, are listed in Appendix F.

You may be surprised to discover that a program is just a set of instructions that the computer
follows one at a time. These instructions must be given to the computer in a language it "under­
stands". The SHARP PC-1500 "speaks" a dialect of BASIC, a widely used and very popular
programming language. Like other languages, BASIC has a special vocabulary and grammar
rules which are combined to form statements. If you speak to SHARP "ungrammatically", or in
unfamiliar vocabulary, the computer will alert you to your error. But it is not difficult to
correctly in~truct SHARP. The BASIC language was originally developed to teach programming
principles and many of its statements contain English words and other familiar symbols.

As you use SHARP to program, you will follow a certain routine. The instructions which make.

up a program are entered in the PROgram mode. These instructions are known as "statements"
in the BASIC language. To begin execution of these statements, it is necessary to switch to the
RUN mode, and then to instruct SHARP to proceed by typing the RUN command. For you
"experts", who already have the two programs of Chapter 0 under your belt, this will be familiar.
For those who are peeking ahead, let's try entering and running a program:

Switch to the PROgram mode and issue the BASIC "command" (more on commands vs.
statements later):

This will erase any previous statements which may be left in memory. Type the following line:

Program Listing:

10 PRINT "GOOD SHOWI"

Keystrokes:

OJ [Q] m []] CO 00 IT] ISHIFT I~W [Q] [Q] m !sPACEI

rn [ffJ [Q] 00 I SHIFT I CD ISHIFT I~ IENTER I

26

Our one-line program is complete. Change to the RUN mode and type:

This command instructs SHARP to begin processing the statements (or, in this case, the statement)
in our program. Following orders, SHARP prints:

DEC RUN

GOOD ~:;HO~,J!

on the display. (Press ENTER to inform SHARP when you are through reading).

To make any additions, changes or deletions to our program we must return to the PROgram
mode. If our program had contained an error and had not completed successfully, it would
have been necessary to return to the PROgram mode to correct the offending statement. Thus,
work on programs is accomplished in the PROgram mode, while the execution and testing of
programs is performed in the RUN mode.

You may have noticed in the previous example that we communicated our desires to SHARP
by two different methods. The instructions NEW and RUN were performed immediately after we
pressed ENTER. This type of instruction is known as a command. The PRINT instruction, on
the other hand, was somewhat different. It was entered in the PROgram mode, was preceeded by
a number (10), and was not executed immediately. This type of instruction is known as a state­
ment.

In some sense, the commands tell SHARP what to do with the statements. For example, the
NEW command will erase all currently saved statements. It is important to remember that
commands may not be used within a program whereas statements almost (but not quite) always
are grouped to form a program.

A BASIC program consists of a series of numbered lines each containing one or more state­
ments. The "Iine numbers" are used by SHARP to maintain the correct sequence during
execution but do not become part of the output when the program is run. Statements may be
entered in any order but are processed by the computer sequentially by line number (subject to
modification, as we shall see later).

As a demonstration, let's add a statement to our previous one-line program. Switch to the
PROgram mode and type:

Keystrokes:

rn m [J[] IT]00 CO ! SHIFT I~m [Q] IT] IT] m ISPACEI

1SHIFT I~ ! SHIFT! m ! ENTER!

27

Now run the revised program. What happens? Press IENTERI after "JOLLY" appears.

Notice in this example both what SHARP has done for you and what you have had to do for
yourself. SHARP has arranged and executed lines 5 and 10 in the proper order. Yet, to nudge
SHARP on from line 5 to 10, to see the result of line 10, you have to press ENTER between
outputs.

Although a line number may be any number from 1 to 65,279, we strongly advise you to
number your lines by increments of 10 (Le. 10, 20, 30, ... etc.). This allows you to insert up to
9 statements between your current statements (11 through 19, for instance). Some programmers
recommend an even greater gap.; numbering by 20's. Although, with careful program design and
writing, you will rarely need to insert statements, do not count on this! It is far easier to number
by 10's now than to renumber many statements later.

Remember that no two lines may have the same line number. If this condition should occur,
the oldest line (the one entered first) will be lost. This feature can be exploited to delete
unwanted lines merely by keying the line number of the line to be deleted and pressing IENTERI •

Thus, an empty, yet numbered, line will effectively delete an existing line with the same number.
If duplicate line numbers are used unintentionally, however, trouble will result. To

demonstrate this, enter the following line (in PROgram mode, of course):

Keystrokes:

m [ill m []] CD [J[J m I SHIFT I c:J m ffiJ m []] IT]

I SHIFT I c:J IENTER I

Now run' the program in the same way you did before. It is "JOLLY AWFU L'" to loose a
program line, isn't it? And since line loss can lead to some very subtle errors, you should exercise
caution in writing your programs.

)

"But", you might ask yourself, "How can I remember what lines I have entered?". Fear not
intrepid programmer! This need to review has been anticipated and provided for with the rn
(Up Arrow) and rn (Down Arrow) keys. You may think of these as the Program-line Review
keys. By pressing the appropriate key (in PROgram mode), one may "move" up or down through
the lines of the current program (a process known appropriately as "scrolling"),

Switch to the PROgram mode and use the Down Arrow key to review the lines of our program
in ascending order. Now use the Up Arrow key to move back to the top of the program (line 10).
Note that if either Arrow key is held down, successive lines will be displayed automatically.
(Unfortunately, this feature is not easily seen with a two line program).

Once you have reached a given line using the Program-line Review keys, you may then proceed
to edit that line using the Right or Left Arrow keys. You will be delighted (relieved?) to discover
that the operation of these keys in the PROgram mode is identical to their operation in the RUN
mode (see Chapter 2). The DELete and INSert functions are also available for use in statement
editing, and are invoked in the same manner as before.

NOTE: That after any changes are made to a program line, you must press ENTER in order to
affect those changes. DO NOT use the Up or Down Arrow keys to move on to the next adjacent
line without pressing IENTER I or any editing you may have performed will be lost.

28

LET S = 7

Now that we know how to enter, run, and edit programs, we shall expand our vocabulary of
useful statements and commands. Let's begin by examining some old friends: the NEW
command, the LET statement, and the PRINT statement.

F.1. The NEW Command

As we saw in our previous programming examples, the NEW command deletes all program lines
currently in memory. We will use the NEW command (in PROgram mode) before each sample
program to insure that the only instructions in SHARP's memory are the instructions of our
current program. Although it is possible (and often desirable) to have several programs in memory
simultaneously, we will postpone the use of this feature to avoid confusion.

In PROgram mode, issue the NEW command. What effect do the Up and Down Arrow keys
have now?

F.2. The LET Statement

Don't be alarmed if you don't recognize the LET statement as an "old friend"; I sneaked this
one in on you. Actually, the LET statement is nothing but the Assignment statement in disguise.
(If you don't recognize the Assignment statement either, please re-read the section on variables,
in Chapter 2, immediately!).

In the early days of BASIC every statement began with a "keyword" (like PRINT, INPUT, etc.)
which indicated what the instruction did. LET was the keyword which identified the fact that a
value was to be stored into a variable. Today, it is generally agreed that the word LET is not really
needed. As a result, the keyword LET is optional in PC·1500 BASIC. Thus, a statement which
stores the number 7 into a variable S can be written in either of the following ways:

S=_7
1_0_r--:J

L
The one exception, the place where LET must be used, is an assignment which occurs as part

of an IF statement. Although we have not yet discussed the IF statement, this should be possible
to explain (cross your fingers).

Using the IF statement you can write an instruction like the following:

l.E.. expression THEN statement

If the statement following the THEN is an Assignment statement, the keyword LET must be
used. This would result in a statement with the form:

...!..!:-expression THEN LET variable·name = expression

NOTE: Omitting the LET in this case would produce an ERROR 19 (or other error message).

F.3. The PRINT Statement

For most of the programs you write, the instructions will follow a basic pattern (no pun
intended). There will be instructions to read in raw data, instructions to process the data, and
instructions to print or display the results. This pattern has been referred to as the Input,
Processing, Output cycle.

The PRINT statement is the main statement used to produce output. It is not surprising,
therefore, that the PR INT statement has several different variations. The general format of the
PRINT statement is the word PRINT followed by an item or a list of items to be printed. These
include character strings, expressions, or names of variables whose values will be printed. Each
item in a list is separated by a comma or a semicolon.

29

Enter the following program to demonstrate the printing of single items. (Remember to issue
the NEW command before you begin.)

Program Listing:

Hl Z$ = "IS NOUGHT"

2£1 ZZ = fIJ

3£1 PRINT "IN CANADA, TIS THOUGHT"

4fIJ PRINT ZZ

50 PRINT Z$

Keystrokes:

m w w ISHIFT I W @] I SHIFT I~OJ W ISPACEI

DO [Q] (J[] QD [}j] CD ISHIFT I~ I ENTER I

rn w w w @] W IENTERI

rn w m CBJOJDOCD ISHIFTI~OJ DOlsPACEI

IT] m DO m [J[) m I SHIFT I [!]

ISPACE I m OJ w ISPACEJ CD [[] [Q] (J[] QD [[] CD

rn 00 m CBJ OJ DO CD w w I ENTERI

rn w m [BJ OJ DO CD W I SHIFT I rn I ENTER I

When run, this program should produce three lines of output as follows (press I ENTER I after
reading each line):

DEC RUN

DEC

TIS THOUCiHT
RUN

I ~:; t'~OUCiHT

DEC RUN

The first of our PRINT statements (line 30) displays a character string or "Iiteral". Notice that
the double quote marks are NOT printed as part of the output. They are necessary to "delimit",
or mark, the beginning or end of the sequence of characters which you wish to print. This
sequence can include any character except the double quote character itself.

The items in the second and third PRINT statements (lines 40 and 50) should be recognizable
to all readers as variables. When a variable name is used within a print list, the value of the variable
is printed. In this· case, we knew what the values of ZZ and Z$ would be since they were specified
by lines 10 and 20. Printing an "empty" variable will result in a zero or a blank depending on
whether the variable is numeric or character.

Clever readers will have observed that character strings and the values of character variables
are printed beginning on the left side of the display. This is known as "Ieft justified". By
contrast, numbers and the values of numeric variables are "right justified".

30

It is also possible to print the result of an expression which is contained in the PRINT state­
ment. The following one-line program illustrates this:

Program Listing:

10 PRINT (1982-1956)*365.25

Keystrokes:

moommmoornmmrnrnmGmrnmmm
CD rn m m Q mm IENTER I

As you might expect, the result, a number, is right justified.
For the sake of efficiency, it is best to avoid computing expressions within PRINT statements

unless that statement (and its associated expression) will be executed only one time in a program.

Because most programs compute several results at once, the printing of several items simultane­
ously is a common practice.

Perhaps the simplest of the multiple-item PRINT statements divides the display window into
two sections. Each section contains one of two items specified in the print list. The items are
separated in the list by a comma. Explore thb format using the following program:

Program Listing:

10 A=2*PI

20 PRINT "2TIMESPI=",A

Keystrokes:

m rn m 8mrn m m IENTERI

moo m mmoo rn [SHIFTI~m ISPACEI

rn m [M] IT] W [SPACEI m m 8
ISHIFT I~ I SHIFT I C!J m I ENTER I

Run the program. As in the single-item PRINT statements, numbers are right justified and
characters are left justified. In this case, the justification (alignment) occurs within each of the

two sections of the display.
Using your editing skills, alter line 20 to read:

2¢ PRINT A, "=2 TIMES PI"

Although there are several ways to accomplish this editing, one set of keystrokes could be:

~OJ rn OJ CEl CEl I SHIFT I [ffiID I SHIFT I [ffiID m
I SHIFT I C!J CEl I SHIFT I [ffiID 8

CElCElCElCElCElCElCElCElCElCEl
I SHIFT I @.ffi CEl I SHIFT I @.ffi I SHIFT I @.ffi IENTERI

31

The output from this modified version should help you to identify the two sections of the
display.

More than two items may be displayed on the same line through a variation of the PRINT
statement which utilizes the semi colon. Build and check the following program:

Program Listing:

10 B$ =" BE "

20 T = 2

30 PRINT T; B$; "OR NOT"; 12/3 - 2; B$

Keystrokes:

OJ w rn 1SHIFT I W 0 I SHIFT I~ ISPACEI rn IT] ISPACEI

I SHIFT I~ IENTERI

rn w C00 rn IENTERI

rn w m m OJ [R] CO CO I SHIFT I c::::J rn
I SHIFT I W I SHIFT I c::::J

ISHIFT I~ [Q] m ISPACEI [R] [Q] CO I SHIFT I~

I SHIFT I c::::J OJ rn CZJ rn G rn I SHIFT Ic::::J
rn ISHIFT I W IENTER I

Running this electronic composition should produce the following output:

OEG RUN

BE OR NOT 2 BE

Shakespeare it ain't, but it does illustrate the action of the PR INT statement when the printable
items are separated by semicolons. In this format, the items are adjacently displayed with a
minimum separation between them. This capability is very handy for creating "natura'" looking
output (i.e. output which flows together).

NOTE: If the length of the information displayed exceeds the space available on the display
(25 characters), the items at the end of the print list will not be seen.

Another use of the hard-working semicolon is at the very end of a PRINT statement. In this
capacity, the semicolon indicates that the output currently on the display should be saved and
that any new output (from the next PRINT statement) should join the old output on the same
line. This process is easier to program than to describe, so let's experiment with the following
program (don't forget the NEW command):

Program Listing:

100 PRINT "HUMPTY";

110 PRINT "DUMPTY"

32

Keystrokes:

OJ OJ [I) IT] W OJ 00 CTI I SHIFT I C'.J [Q] OD CMJ m CTI rn
ISHIFT I~ IENTER I

Now run it. As usual, you must press IENTERI after the first PRINT statement has displayed
"HUMPTY". Because of the semicolon "HUMPTY" is retained and "DUMPTY" shares the
display with it. Contrast this with the execution of the following program which does not utilize
the semicolon and the differences will become clear:

Program Listing:

10 PRINT "HUMPTY"

20 PRINT "DUMPTY"

Keystrokes:

OJ [I) m w OJ 00 CTI I SHIFT I~ ffiJ [Q] CMJ IT]CTI IT]

I SPACE I ISHIFT I C'.J t ENTER I

CD rn IT] CKl OJ 00 CTI I SHIFT I~m OD CMJ m CTI rn
ISHIFT I C'.J IENTER I

The next sample program illustrates that the semicolon may join as many lines of output as
will fit on the display. Printing too much information on the display is a mistake which SHARP
will not signal. It is up to you, as a programmer, to insure that this will not happen. Try the
following educational program:

Program Listing:

20 PRINT "DO ".,

40 PRINT "RE ".,

60 PRINT "MI ".,

80 PRINT "FA ".,

100 PRINT "SOL ";

120 PRINT "LA ";

140 PRINT "T I ";

160 PRINT "DO "

33

Keystrokes:

m 00 m DO CO 00 CD ISHIFT I~ [[] [Q] ISPACEI

I SHIF~ I~ I SHIFT I m I ENTERI

rn 00 m DO CO 00CD I SHIFT I~ DO m ISPACE/

I SHIFT I~ I SHIFT I m IENTER I

m CID m DO rn 00 CD I SHIFT I~ [M] OJ ISPACEI

I SHIFT I~ I SHIFT I CO I EHTER I

rn 00 m DO rn 00 CD I SHIFT]~m w ISPACEI

rn 00 00 m DO OJ 00 CD I SHIFT I~W [Q] CD ISPACEI

I SHIFT I~ I SHIFT I m IENTERI

rn moo m DO OJ [[J CD I SHIFTI~ CD m ISPACEI

I SHIFT I~ ISHIFT I m IENTER I

rn rn 00 m DO OJ [[J CD I SHIFT I~ CD OJ ISPACE I

Now run the program, pressing IENTERI repeatedly while joyously singing each note in the scale
(okay, okay ... you don't have to sing, but you still have to press IEHTERI).

The PAUSE statement is a semi-automatic form of the PRINT statement. It displays the
various items in its associated list for a fixed and brief time period. The user is thus freed
from the burden of prodding SHARP to continue by pressing ENTER. Think of the PAUSE as a
PRINT statement followed by a countdown. When the countdown is over the program continues.

The formats of the PAUSE statement are identical to those of the PRINT statement. All of
the various techniques which we have discussed for the PRINT statement are applicable to the
PAUSE statement, although the resulting output will, of course, vary slightly. To illustrate one
use of the PAUSE statement, let's re-write our musical scale program:

Program Listing:

10 PAUSE "DO ".,

20 PAUSE "RE ".,

30 PAUSE "MI ".,

40 PAUSE "FA ".,

50 PAUSE "SOL ";

60 PAUSE "LA ";

70 PAUSE "T I ";

80 PAUSE "DO"

34

Keystrokes:

OJ w m 00 [J[J CD CD I SHIFT I [:::::J []J [Q] I SPACEI

I SHIFT I [:::::J I SHIFT IOJ IEHTERI

m w m 00 [J[J CD CD I SHIFT I [:::::J []] CD ISPACEI

I SHIFT I [:::::J I SHIFT I OJ I EHTER I

rn w m 00 [J[J CD CD I SHIFT I [:::::J 00 CD !SPACEI

I SHIFT I [:::::J I SHIFT I OJ IEHTERI

rn 00 m 00 [J[J rn CD I SHIFT I c:J [£] 00 ISPACEI

I SHIFT I [:::::J I SHIFT I OJ IEHTER I

W 00 m 00 [J[J rn CD ISHIFT I [:::::J CD [Q] W ISPACEI

I SHIFT I [:::::J I SHIFT I OJ I EHTER I

wOO moo [J[J IT] CD ISHIFTI [:::::J W 00 I SPACE I

ISHIFT I [:::::J I SHIFT I OJ I EHTER I

rn CKJ m 00 [J[J rn CD I SHIFT I [:::::J CD CD ISPACEI

I SHIFT !~ I SHIFT I OJ IEHTER I

rn 00 m 00 [J[J w CD I SHIFT I~ []J [Q]

I SHIFT I~ I EHTER I

Notice what happens after the last "note" is printed; the program ends and the display returns
to the prompt. This happens because there are no other statements following the last PAUSE. To
"Freeze" the display after the last note is printed, we can change line 80 to:

80 PRINT "DO"

Keystrokes:

rn 00 IT.] []] CD [K] CD I SHIFT I~ W [Q]

I SHIFT I~ IEHTERI

After all, there's no reason why we can't mix PRINT and PAUSE statements throughout our
program. Try this for yourself.

By utilizing the various forms of the PRINT statement, alone or in combination, information
can be nicely presented to the computer user. Most of the items which will be printed, however,
are the result of processing some initial data. This initial data is given to the program by that
same computer user. The instruction which controls this process is the INPUT instruction.

In its simplest form; INPUT variable-name, the INPUT instruction merely prints a ? (question
mark) and then waits for the user to type in the required information. What is "required" depends
on the variable which appears as part of the INPUT instruction. For example, if the variable is
numeric, the user should enter a number, which will be stored in the variable.

Do you see a problem with this form of the INPUT statement? Good. As some of you may
realize, unless the user of the program is also the programmer (and probably not even then), he
will not know what type of data to enter when he sees the question mark. It is up to the

programmer to keep the user informed at all times.

35

As an example of a program which fails to do this, enter the following:

Program Listing:

10 A = 0

20 INPUT A

30 PRINT A*P I

Keystrokes:

OJ w rn 0 w IENTERI

m w CO [J[) IT] DO IT] rn I ENTERI

rn W IT] OD CO [J[) IT] rn [I] IT] CO IENTER[

Now imagine the user as he runs the program ... The first thing that appears on the display is
a question mark. The knowledgeable user will realize that some data is required but he will have no
idea what that data should be. Suppose he takes a wild guess, and luckily, enters a number.
Suddenly, a long and complicated number appears. What does it mean? He presses ENTE R to
continue, but the program ends. From his viewpoint, the whole experience has been a waste of
time. Why? Because of poor programming.

One solution to this problem is to use PRINT or PAUSE statements to help the user along.
With this idea we can re-write our program as follows:

Program Listing:

10 A = 0

20 PAUSE" ENTER ANY NUMBER"

30 INPUT A

40 AP = A* PI

50 PRINT A; " TIMES PI"; AP

Keystrokes:

OJoo rn@]w IENTERI

m W IT] rn DO []] m [SHim C'J m [J[) IT] mOD ISPACEI

rn [J[) CD I SPACEI [J[) DO 00 []] m OD ISHIFT I C1J IENTER I

rn w CO [J[) IT] DO IT] rn I ENTER I

rn 00 rn IT] 0 rn [I] IT] co I ENTER I

rn 00 IT] OD CO [J[) IT] rn I SHIFTI co I SHIFTI C1J I SPACE I

IT]co 00 m IT) I SPACEI IT] co I SPACEI0

[SPACEII SHIFT I C'J I SHIFT I co rn IT] IENTERI

This version is much more useful because it "prompts" (or provokes) the user for input and
because it identifies the output.

36

The operation of prompting (printing a request for input) is so common that more advanced
forms of the INPUT statement have been created which incorporate it. The first of these is
written with a semicolon:

INPUT "characters"; variable-name

Astute readers will recognize our old friend the character string. This string will be printed
on the display as a prompt. The cursor, replacing the question mark, will follow on the same line,
and SHARP will wait for the user's input. This form of the INPUT statement allows us to re-write
our previous example as:

Program Listing:

10 A = 0

20 INPUT "ENTER ANY NUMBER II. A

30 AP = A*PI

40 PRINT A; " TIMES PI "; AP

Keystrokes:

CD rn 00 0 rn IENTERI

rn rn CD []] W 00 CD I SHIFT I [2] rn []] CDrn rn I SPACEI

00 []] CYJ I SPACE I []] 00 rID [[] rn []] ISPACE I

I SHIFT I [2] I SHIFT 1OJ 00 IENTER I

rn 00 00 w 000 CD W CD [ENTERI

IT] rn wOO CD []] CD 00 I SHIFT 1OJ I SHIFT 1[2] ISPACEI

OJ CD rID rn CD ISPACEI W CD ISPACEI 0

ISPACE I I SHIFT I [2] I SHIFT I OJ 00 W IENTER I

As you run this example, notice how the use of the INPUT statement differs from the PAUSE
statement.

The second prompting input form is almost identical to the first except that it uses a comma

instead of a semicolon:

INPUT "characters", variable-name

When this form of the statement is executed, the associated character string is displayed and the
computer again waits for input. This time, however, as the user begins to type, the prompt
message is cleared and the user's data appears in its place. This allows data entry after a long

prompt without running off the end of the display.
Change the semicolon to a comma in line 20 of our program and re·run the program.

Of course, the entry of data is not limited to numbers, as our examples so far have implied. To
enter characters we merely specify a character variable in the INPUT statement as in this brilliant,

deductive program:

37

Program Listing:

10 INPUT "ENTER YOUR LAST NAME "; L$

20 INPUT "ENTER YOUR FIRST NAME "; F$

30 1$ = LEFTS (F$, 1)+". "+ LEFTS (LS, 1) +"."

40 PAUSE "GEE,"

50 PRINT "YOUR INITIALS ARE "; 1$

OJ m [IJ 00m (J[J CD I SHIFT I~m 00 CD m rn rSPACEI

W [Q] (J[J [[] I SPACE I CTI rn rn OJ I SPACE I

00 rn 00 IT] ISPACEII SHIFT I~ I SHIFT I CD

CTI I SHIFT! rn IENTER I

moo [IJ 00 m (J[J OJ I SHIFT I~m 00 OJ W [[] ISPACEI

W [Q] (J[J rn ISPACEl m [IJ [[] []] CO !SPACEI

oornoo m ISPACEIISHIFTI~

I SHIFT I CD m I SHIFT I rn I ENTER I

rn 00 [IJ I SHIFT 1m QD CTI w m CD ISHIFT Irn [I]m
I SHIFT Im I SHIFT I GJ [I]

CD C±J ISHIFT I~ Q ISHIFT I~ C±J

CTI m m CD 1 SHIFT I rn [I] CTI I SHIFT I rn
I SHIFT I [!] [I] OJC±J [SHIFT I~ 0

I SHIFT I~ IENTER I

m rn m 00 CO 00 CD I SHIFT I~W [Q] (J[J rn ISPACEI

[IJ 00 [IJ CD [IJ rn CTI rn I SPACEI rn [[] m I SPACEI

I SHIFT I~ I SHIFT I CD CO ISHIFT I rn I ENTER I

NOTE: Don't worry about line 30; it uses advanced techniques which you will learn later.

In addition to accepting a single item of data, the INPUT instruction may be used to gather and
store several such values. To program such a process, one merely lists the variables which will
receive data within the INPUT instruction. Each variable in the list is separated by a comma.

As an example of multiple-item input, build this statistical program:

Program Listing:

10 W = 0 : X = 0 Y = 0 : Z = 0

20 INPUT "ENTER AGES OF 4 PEOPLE", W, X, Y, Z

30 S=W+X+Y+Z : A=S/4

40 PAUSE "TOTAL YEARS = "; S

50 PRINT "AVERAGE AGE IS "; A

38

Keystrokes:

o::::J 00 00 @] W I SHIFT I CD CD @] rn I SHIFT I CD CYJ @] rn

I SHIFT I CD W @] rn IENTER I

rn rn CD (J[J IT] OD CO I SHIFT I c::J IT] (J[J CO IT] [[] ISPACEI

m ~ IT] W ISPACEI [Q] m ISPACEI rn ISPACEI

IT] IT] [Q] IT] CD IT] I SHIFT I c::J I SHIFT I C!J

00 I SHIFT I CiJ rn I SHIFT I CiJ CD ISHIFT I CiJ
W IENTERI

rnoow@]oornrnrnCDrnwlsHIFTICDm@]wmrn

IENTERI

rn wIT] m OD w IT] I SHIFTI c::J CO [Q] CO m CD ISPACEI

CD IT] m [[] w ISPACEI @] ISPACEII SHIFT I c::J

I SHIFT I CD W IENTER I

mWIT][[]CD(J[JCOlsHIFTIc::JmmIT][[]m~IT]lsPACEI

m ~ IT] ISPACEI CD W ISPACEI I SHIFT I c::J

I SHIFT I m m IENTER I

When run, this somewhat indiscrete program will prompt you to enter 4 numbers. The first
number you type will replace the prompt because we used a comma directly after the character
string in the INPUT statement. When the first number is completely typed you must press IENTERI .

A question mark will precede ever\, successive number each of which must also be followed
by pressing IENTER I .

Had we used a semicolon in the INPUT statement, the first number entered would not have
replaced the prompt but would have shared the line with it. All successive inputs would have been
the same as with the comma. Try this for yourself by altering line 20 to read:

20 INPUT "ENTER AGES OF 4 PEOPLE"; W, X, Y, Z

Keystrokes:

rn rn CD (J[J IT] OD CO ISHIFT I c::J IT] (J[J CO m [[] ISPACEI

m ~ IT] W ISPACEI [Q] IT] ISPACEI rn ISPACEI

IT] IT] [Q] IT] CD IT] ISHIFT I c::J I SHIFT I CD

00 I SHIFT I CiJ rn I SHIFT I CiJ CD I SHIFT I CiJ

W IENTER I

Since you have been so diligent and patient, I have provided this section as a small reward.
I know it's not as good as money but the information contained here may save you some effort.

39

1.1. Abbreviations

Those of you whose golden fingers do not fly swiftly over the computer's keys will have
noticed that our sample programs have been growing steadily larger. In a burst of merciful fore­
thought, SHARP's clever designers have anticipated your difficulties. They have enabled SHARP
to recognize abbreviations for frequently used statements and commands.

The general form of an abbreviation is one or more designated letters followed by a period.
The period is crucial to avoid confusion with variable names. As an example, enter the following
program whose statements are abbreviated:

Program Listing:

15 PA. "HELLO, HUMAN."

25 I. "WHAT IS YOUR NAME? "; N$

35 P. "GLAD TO MEET YOU, "; N$

Keystrokes:

D.J CD w m 0 I SHIFT! C'J OD rn CO CO [Q] I SHIFT I C!J

[]] [J[] O!D m []] 0 I SHIFT I C'J I EHTERI

rn CD CO 0 I SHIFT I C'J Qi[) OD m IT] I SPACE I CO CD I SPACEI

ITJ [Q] [J[] [K] ISPACEI []] m O!D rn I SHIFT I rn I SHIFT I C'J

I SHIFT I m []] ISHIFT I rn IEHTER I

OJ CD W 0 I SHIFT I C'J m CO m [Q] ISPACEI IT] [Q] ISPACEI

O!D rn rn IT] ISPACEI ITJ [Q] [J[] I SHIFT I C!J ISPACEI

I SHIFT I C'J I SHIFT I m
[]] I SHIFTI rn IEHTERI

As you complete the entry of each line (by pressing the ENTE R key), notice that SHARP
expands any abbreviations on that line. The resulting clarity is immensely valuable to your later,
as you check the program for errors. An additional hidden benefit is that the space used to
store the abbreviations for the statements is no more (or less) than the space used to store the full
statement. Thus, the abbreviation facility is strictly a convenience for you, the programmer.

To enhance readability we will not ·use these abbreviations in our sample program listings
(although you may, of course, when entering the programs). The following are the allowable
abbreviations for commands and statements already introduced:

PRINT P.
PRo
PRI.

PAUSE PA.
PAU.

INPUT I.
IN.
INP.

RUN R.

A complete list of abbreviations is included in the back of this manual as an Appendix.

40

1.2. Multiple Statements and the Colon

As mentioned in the section on line numbers, several statements may share the same line.
SHARP will execute the statements in sequence from left to right. In order for SHARP to be
able to distinguish the end of one statement from the beginning of the next, some "signalling"
character must be used. This character is the colon (:). By analogy, the function of the colon
is similar to the function of the periods which separate the sentences on this page; it tells one when
to stop reading.

The use of the colon has already been illustrated in several of the last few sample programs. Its
general form is as follows:

line-number statement 1 : statement2 : statement3 (etc)

The question of when to use the colon is a matter of programming style. Indiscriminate use of
the colon to write very compact programs produces programs which are very difficult to read,
correct, or expand. Since the prime advantages of the PC-1500 are that it is personal and inter­
active, it is highly desirable that you are able to modify and extend programs to suit your own
needs. We therefore recommend that you exercise restraint in your use of the colon.

If you do use the colon, it is very advantageous to group only those statements which are con­
ceptually related. That is, place only those few statements which accomplish a single task, out of
the many possible tasks that comprise the program, on one line.

For example, consider the following program statements which read in three numbers, find
their average, compute the difference of each number from the average, and print the sum of these
differences:

Program Listing:

10 N1=0: N2=0 N3=0

20 INPUT "ENTER 3 NUMBERS", N1, N2, N3

30 A = (N 1 + N2 + N3) /3

40 D1 = N1 - A : D2 = N2 - A D3 = N3 - A

50 SD = D1 + D2 + D3

60 PRINT "SUM OF DIFFERENCES = "; SD

Keystrokes:

w rn []D W @]rn ISHIFT I CJ []D W @] 00 ISHIFT I D []D rn

@] rn IENTER I

W rn [0 []D m DO CD ISHIFT I~ m []D CD m 00 ISPACEl rn

ISPACEI []D DO [M] rn moo []] ISHIFT I~ I SHIFT IUJ

[]D W I SHIFT IUJ []D W I SHIFT IUJ 00 rn IENTER I

rnrnw@]moowwooWwoornrnWrnlENTERI

rnrnOOw@]oowawISHIFTIQOOW@][]Dwaw

I SHIFT I DOOrn@] oornaw IENTER I

rn rn rn 00 @] 00 w w 00 W wOO rn IENTER I

rn rn m 00 [000 CD I SHIFT I~ []] DO [M] ISPACEI

[Q] m ISPACEI 00 [0 m m moo m 00 m m []]

@] (SPACEI

ISHIFT I~ I SHIFT I OJ []] 00 IENTERI

41

Notice how each line in the program accomplishes a single complete and necessary step. Line
10 erases any previous values which might be contained in the variables N1, N2, and N3 (this is a
precaution in case the user fails to enter all three numbers). Line 20 collects the data from the
user. Line 30 averages the numbers. Line 40 computes the three differences. Line 50 sums the
differences and line 60 prints the result.

It is no accident that the instructions on each line correspond to the English language descrip·
tion of the program. Instead, this is one of the principles of good programming which you should
try to follow.

Unlike the use of abbreviations, the use of the colon does affect the amount of memory used
to store the program. This is the chief justification for using the colon to place several statements
on one line. Each line number reserves several program "steps" (a unit of storage) and therefore
the fewer the line numbers in a program, the smaller memory size of the program.

The final statement about the use of the colon is that each programmer must balance each
program's readability and changeability against the storage needs of his application.

Although abbreviations and colons help us to easily enter programs, they cannot prevent the
best of us from making mistakes. Even professional programmers fail to catch errors when
reviewing their own programs. What this means is that sooner or later you will encounter an error
while running your program (if you haven't already). Most of these errors are easily corrected if
you simply accept them as a puzzle to be solved and carefully track down the problem. Several
features of the PC·1500 will assist you in this.

Upon discovering an incorrect statement SHARP will halt and indicate the problem with a
terse message such as:

RUN

ERROR IN 20

Let's create a program with a deliberate error for purposes of illustration. Enter:

Program Listing:

25 PAUSE "HUMPTY DUMPTY"

50 PRIMT "WAS AN EGGHEAD"

Keystrokes:

mwmrnWmWISHIFTI~WWoommmISPACEI

[QJ W 00 m m m I SHIFT I~ IENTERI

W W moo OJ 00 m I SHIFTI~ [}i[] rn m ISPACEIrn CKJ

ISPACEI W W W W W rn [QJ ISHIFT I~ IENTER I

Now run the program. When the error message appears depress the [[] (Up Arrow) key.
As long as you hold this key, the display will show the line on which SHARP became confused.
The flashing grid may provide a hint as to the nature of the problem.

To correct the bad statement, press @ to quit the program and switch to the PROgram
mode. Press the Up Arrow key, but do not hold it, and the display will again show the erroneous

line:

42

50 PRIMT "WAS AN EGGHEAD"

You may now proceed to edit the line using the familiar INSert, DELete, and Arrow keys.

When you have finished editing, you must press IENTERI to instruct SHARP to store the corrected
line.

c)

Another way to display a particular line of a program is to use the LIST command whose form
is:

L
LIST ----------->0, o~

LIST line-number

If no line·number is given, the first program line will be displayed.

If a line·number is specified, the program line with that number is displayed. If no program
line has the given number, the next program line whose number is larger is displayed. For
example, assuming the following program:

15 PRINT "MOTHER GOOSE"

30 PRINT "WAS A";

45 PRINT "QUACK"

the command LIST 40 will display line 45. The command LIST will display line 15, and the
command LIST 30 will display line 30 (what else?).

NOTE: If you specify a line·number which is larger than any existing program line-number, an
ERROR 11 will occur.

As we have mentioned previously, it is possible to maintain more than one program in memory
at the same time. The trick to doing this is to give each program its own range of line·numbers.
For example, one program could have line-numbers of 10 to 200 while the lines of a second
program would be numbered from 300 to 500. You must, of course, be careful not to
accidentally intermix statements from the various programs (by incorrect numbering) or
unpredictable results could follow.

L.1. The END Statement

Another problem that occurs while storing several programs simultaneously is that each
program is just a group of numbered statements and statements are executed in ascending order.
Therefore, how will SHARP know when it has finished executing statements from a given
program? The answer is that it won't unless you tell it. The statement used to signal the
computer that it has reached the end of a program is the END statement.

Until now we have not used, nor needed, the END statement. SHARP has simply executed all
of our program lines in ascending order until it ran out of statements. When it ran out, the
computer decided that the program was finished and returned to wait for our next command.
Now, however, we must tell SHARP to stop executing instructions before it continues on to the
next program.

To illustrate the use of multiple programs enter the following lines:

43

10 PAUSE "HUMPTY DUMPTY"

20 PAUSE "HAD A GREAT FALL"

30 PRINT "BUT NOT A GOOD SPRING"

40 END

200 PAUSE "THE OLD MANS GLASSES"

210 PRINT "WERE FILLED WITH SHERRY"

220 END

L.2. RUN line-number

Well, now that you have two programs in memory, how are you going to run each of them
separately? If you are adventurous enough to have tried the normal RUN command, you will have
discovered that it is perfectly adequate to initiate the first program. (If you are not adventurous,
try this now). To begin the second program we need to use a variation of the RUN command
which tells SHARP on what line to start. This is the RUN line-number command. To start the
second program type:

and voila, it is done I

Like most helpful commands, the RUN line·number command can cause problems. Because
it instructs SHARP where to begin following instructions, and because SHARP is such an obliging
servant, programs can be started in the middle. This, as you might guess, should not be done by
choice. If it is done, it will produce some, ah ... unusual results. Try it on our first program by
issuing the command:

RUN 30

This is a mild mistake compared to what could happen in a more complex program.

Our programs so far have been a consecutive sequence of instructions each performed one time
by the computer. Those with experience giving instructions may realize that this is not always
the best way to accomplish a task. Often you allow your listener to choose one of several plans.
Sometimes you "condense" your instructions by including a command like, "Now repeat the last
3 steps until you are finished."

These capabilities have been incorporated into statements in BASIC called control statements.
These determine when, if, and how often other statements will be executed. Control statements
enable you to build very powerful and versatile programs. In the next few sections we will discuss
the major control statements of BASIC; the IF ... THEN, the GOTO, and the GOSUB.

N. IF and THEN

The potential for choice within a BASIC program is provided by the IF statement. A program
equipped with an IF statement can evaluate your input and make decisions:

44

Program Listing:

10 PAUSE "ARE YOU ASLEEP?"

20 INPUT "TYPE YES OR NO "; SX$

30 IF SX$ = "YES" THEN PRINT "OH, SORRY TO

DISTURB YOU"

40 END

Keystrokes:

OJ W w rn (JO wIT] ISHIFT I~ rn 00 IT] ISPACE I

IT) [Q] (JO 1 SPACE! rn W m IT] IT] w I SHIFT I CD
I SHIFT I~ 1 ENTER I

m w OJ [][J w (JO IT] I SHIFT I~ IT] IT) w IT] ISPACE!

IT) CD W ISPACEI [Q] 00 ISPACE! [][J [Q] ISPACE!

I SHIFT I~ I SHIFT I D w rn I SHIFT I rn IENTER I

rn w OJ [£] w rn 1SHIFT I rn 01 SHIFT I~ IT) CD W I SHIFT I~

IT] OD CD [][J w 00 OJ [][J IT] I SHIFT I~ [Q] OD

I SHIFT I [LJ I SPACE I W [Q] 00 00 IT) ISPACE IIT] [Q]

I SPACE! IT] OJ w IT] (JO 00 rn ISPACE! IT) [Q] (JO

This soporific program will only produce output if you answer affirmatively. The general form
of the IF statement, which line 30 illustrates, is:

IF condition TH EN statement
- ---

During execution, the test embedded in the IF clause is performed. Whether the statement is
performed, or not, depends on the result of the test. The test is usually an inequality and is cal red
a "condition." Remember that inequalities are comparisons which are either True or False. If

the inequality is True then the statement is executed. If the inequality is False then the statement
is skipped.

In our sample program the test is whether the variable SX$ is equal to (contains) the character
string "YES". If it does, and only if it does, then the PRINT instruction is followed. If SX$ is not
equal to "YES", then the PR INT instruction is ignored. In either case, no matter whether the PR INT
statement is executed or ignored, SHARP will proceed, as normal, to the next line. (In our sample
program the next line is line 40).

Notice that we could have reversed our test by altering several lines in the following manner:

30 IF SX$ = "NO" THEN END

40 PRINT "OH, SORRY TO DISTURB YOU"

This program, however, is not quite the same as the original. It allows our apologetic computer
to talk with anyone who mistypes or who doesn't answer with a "NO". In addition, this program
really has two endpoints; the END statement in line 30 and the implied END beyond line 40.

45

Several endings are not the result of good programming practice. Our reversal of these statements
does demonstrate though, that correct ordering of statements and proper testing are necessary for
a program to operate correctly. In the next section, we will observe a third way to phrase our
program which involves the GOTO statement and solves the problems of the second version.

One more reminder is in order. If the statement which follows the THEN is an assignment
statement, the LET keyword MUST be used. Failure to do so will cause an ERROR condition to
occur. This was discussed in the section on the LET statement.
Caution: Refer to page 164.

O. GOTO

You may have noticed, in the last section, that our options were limited after the test was made
in the IF statement. We were only allowed to execute one statement if the condition was True.
For convenience, we would like to execute several statements. The GOTO statement allows us to
do this.

The GOTO statement modifies the "flow" of statement execution. It tells SHARP to "go to"
a line other than the next one and begin executing statements sequentially from there. The
effect of this "jump" is that some statements may be skipped entirely. For example review the
following program:

Program Listing:

10 PAUSE "ESCHEW ";

20 GOTO 50

30 PRINT X *3 /4+ 2

40 PRINT "A BOOK WHICH EMPLOYS";

50 PRINT "OBFUSCATION!"

60 END

Keystrokes:

CD rn [ill [Q] CD [Q] rn rn IENTER I

rn rn wOO OJ 00 CD 00 rn rn CZJ rn rn CD I ENTER I

rn rn w 00 OJ 00 CD I SHIFT I~ rn ISPACEI rn [Q] [Q] CKJ

ISPACEI 00 OD OJ W OD ISPACEI m [];[) w CD [Q] IT]

rn rn wOO OJ 00 CD ISHIFTI~ [Q] rn m 0:0 W W

rn CD OJ [Q] 00 I SHIFT I OJ I SHIFT I~ I ENTER I

m rn m 00 [QJ IENTERI

46

/

Normally, of course, this program would execute in ascending line-number sequence. The

effect of the GOTO in line 20, however, is to cause SHARP to proceed immediately to line 50
and to begin in ascending sequence from there. Lines 30 and 40 are never executed.

The general form of the GOTO statement is:

GOTO expression

where:

expression evaluates to a number which is a valid program line-number (i.e. 1 through 65279).

NOTE: Specifying a line-number which does not exist will result in an ER RO R 11.

If we wish to have several instructions executed as a result of a certain choice we use GOTO
statements in conjunction with the IF:

10 !E. test THEN GOTO 100

20 I statements here are
j performed only if the

I test is False.

90 GOTO 200

100 l statements here are
l performed only if the
1 test is True.

200 I statements here are

I always performed.

999 END

The logic of this program is applicable to many situations. Any number of statements can be

inserted in each of the sections which are formed by the GOTO statements.
As an example of this structure in practice, the following segment from a checkbook program

determines whether a given input amount is a deposit (positive number) or a withdrawal (negative

number). An initial balance is entered by the user:

Program Listing:

10 INPUT "INITIAL BALANCE?", B

20 INPUT "TRANSACTION AMOUNT?", TA

25 IF TA = 0 THEN GOTO 80

30 B = B + TA

40 IF TA < 0 THEN GOTO 70

50 PRINT "DEPOSIT OF $"; TA; " POSTED"

60 GOTO 80

70 PRINT TA;" DOLLARS WITHDRAWN"

80 PRINT "FINAL BALANCE = "; B

90 END

47

Keystrokes:

IT] rn CD O!J m []] m I SHIFT I~ CD O!J CD m

CD DO CTI I SPACE I [[] DO CTI DO O!J W []]

I SHIFT I rn I SHIFT I~ I SHIFT I CD [[] I ENTER!

rn rn CD O!J m []] m I SHIFTI~ m m DO O!J rn
DO w m CD [Q] [KJ ISPACEI DO [M] [Q] []] O!J m I SHIFT Irn
I SHIFT I~ I SHIFT I CD m DO IEHTERI

rnrnCDmmDO@][Q]m[KJ[]]O!Jw[Q]m[Q]

rn [Q] IENTER I

rn rn rn @] rn rn rn DO I EHTERI

rn rn CD m m DO I SHIFT!~ rn m [KJ []] O!J

W [Q] m [Q] ITJ rn I ENTER I

rn rn m m CD O!J rn ISHIFT I~ [Q] []] m [Q] CD

CD m I SPACE! [Q] m I SPACE! ISHIFT I rn
I SHIFT I~ [SHIFT I OJ rn DO I SHIFT I CD

I SHIFT I~ ISPACEI m [Q] CD m []] [Q] I SHIFTI~

w rn w [Q] m [Q] rn rn IENTER I

ITJ rn m m rn O!J m m DO ISHIFT I CD ISHIFT I~

ISPACE! [Q] [Q] CTI CTI DO m CD [SPACEI Qi[) rn rn

[KJ [Q] m DO Qi[) O!J I SHIFT I~ I ENTER I

rn rn m m rn O!J m I SHIFT I~ m rn O!J DO CTI

ISPACEI rn DO CTI DO O!J w []] @] ISPACEI

I SHIFT I~ I SHIFT I CD rn I ENTER I

[]] 00 []] O!J [Q] I ENTER I

Observe that this program ends only if the transaction amount is zero. The second IF state­
ment is the one which illustrates the structure we mentioned before. Notice that in addition
to the two separate actions associated with the IF statement (lines 50 and 70), there are some
statements (lines 80 and 90) executed regardless of the result of the IF testing.

We can now write a third version of the program from the previous section:

Program Listing:

10 PAUSE "ARE YOU ASLEEP?"

20 INPUT "TYPE YES OR NO "; SX$

30 IF SX$<>"YES" THEN GOTO 99

40 PRINT "OH, SORRY TO DISTURB YOU"

99 END

48

Keystrokes:

OJ 00 w m DO w CD [SHIFT! c:J mOD CD I SPACEI

rn [Q] DO I SPACE I m w IT] CD CD W I SHIFTI CD
I SHIFT I c:J I ENTER I

CD [[] CO CKJ w DO CD ISHIFT I c:J CD rn w CD [SPACEI

rn CD w ISPACEI [Q] OD ISPACEI CKJ [Q] ISPACEI

I SHIFT I c:J ISHIFT I c=J W rn ISHIFT I rn [ENTER [

mooco wwrn ISHIFTI rn ISHIFTI wlSHIFTI~

I SHIFT I c:J rn CD rn ISHIFT I c:J CD [][] CD CKJ

W [Q] CD [Q] w W IENTERI

rn w w OD CO CKJ CD I SHIFT [c:J [QJ [][] I SHIFT I[!J

ISPACEI W [QJ OD OD rn I SPACE [CD [QJ ISPACEI

[QJ CO w CD DO OD rn I SPACE [rn [QJ DO [SHIFT I c:J

This version reverses the conditional test by specifying some action to be performed if the
user's input is NOT equal to "YES". Thus, it eliminates the problems of the second version, and
could be expanded into the larger form of the IF statement described above. Re-arranging
statements in this fashion is ohen a useful maneuver when programming. Take some time to
experiment on your own and you will be rewarded with better programs.

Another very common use of the GOTO statement is to cause repeated execution of a sequence
of statements. This process is known as "looping". A simple example of looping is illustrated by
this program:

Program Listing:

10 WAIT 30

20 PRINT "CHUG CHUG CHUG CHUG"

30 PRINT" CHUG CHUG CHUG CHUG"

40 GOTO 20

Keystrokes:

OJ oo 00 m CO CD m 00 IENTERI

CD oo W OD CO CKJ CD I SHIFT! c:J W CBJ DO W I SPACE I

W [][] DO W ISPACEI W [][] DO W ISPACEI W [][]

DO W ISHIFT I c:J [ENTERI

moo w OD CO CKJ CD I SHIFT I c:J ISPACEllsPACEllsPACEI

I SPACE I I SPACE I wOO DO W I SPACE I W [][] DO W

ISPACEI W [][] DO W ISPACEI W [][] DO W I SHIFT I c:J

49

Unfortunately, this program will just keep "chugging" along forever. (You may stop the
program by using the BREAK key). We should provide a way for such programs to end. We can
do this by using a "counter" along with an IF statement. A counter is a variable in which we
keep a record of how many times we have done something (Le. we count with it). With this
technique the IF statement will test whether we have performed our PR INT statements a predeter­
mined number of tim2s. Of course, it is entirely up to us to determine the number of repetitions.
Let's pick 10 times for each PRINT statement (after 10 times I get bored).

Using our counter and IF statement we can write:

Program Listing:

10 WAIT 30

15 C = 1

20 PRINT "CHUG CHUG CHUG CHUG"

30 PRINT" CHUG CHUG CHUG CHUG"

40 C = C + 1

50 IF C < = 10TH EN 20

60 END

Keystrokes:

[IJ 00 [}'[) rn CD CO rn 00 I ENTER I

OJ m w 0 OJ IENTERI

CD 00 m rn CD 00 CO I SHIFT I c::J w DO QO W I SPACEI

W OD QO W !SPACEI W OD QO W ISPACEI W OD

QO W I SHIFT I c::J I ENTER I

rn rn m rn CD 00 CO I SHIFT I c::J ISPACEI ISPACE I ISPACEI

ISPACEI ISPACEI W DO QO W ISPACEI W OD QO W

ISPACEJ W OD QO W IS~ACEI W OD QO W ISHIFT I c::J

rn rn w 0 w rn [IJ IENTERI

moo CD IT] w ISHIFT I~ 0 OJ rn CO OD IT] 00

CD 00 I ENTER I

[[] 00 IT] 00 rn I ENTERI

Follow the operation of the counter as each loop is executed. Notice that in line 15 we must
assign the counter an initial value. On line 40 we increment this value to reflect one more
execution of statements 20 and 30.

There are many other ways to use counters and loops within programs. Unfortunately, we do
not have the space to describe them here. We suggest that you pursue your education with one
of the books listed in Appendix F.

The GOTO instruction is a command as well as a statement. As a command its use is naturally
different from its use as a program statement. Issued as a command, in the RUN mode, GOTO
begins program execution in a manner similar to the RUN command. The difference lies in certain
internal preparations which are made before instructions of the program are performed. (For a

50

comparison of the methods used to begin a program, see the Chapter entitled Beginning Program
Execution). Unlike the RUN command the GOTO command will not clear values from any
variables before it begins execution of the program.

To begin program execution with the GOTO command ENTER:

GOTO line-number

where:

line-number is the number of the first line of the program to be executed.

NOTE: Specifying a line-number which does not exist will result in an ERROR 11.

As we saw in the previous section, the ability to repeat a series of instructions is very useful. In
fact this feature is so often used that BASIC incorporates several statements to automate the
process. These are the FOR statement and its partner, the NEXT statement. Together, the FOR
and the NEXT statements enclose a series of instructions which are repeated a number of times.
The FOR statement has an associated counter variable and a built-in test condition. It also allows
the specification of the initial value and the increment value of the counter variable.

The form for all of this information is:

where:

FOR counter-variable initial-value TO final-value STEP increment-value

counter-variable is the name of the variable used to hold the loop count.

initial-value is the value stored in the counter-variable before the first time through the loop.
The allowable range for this value is -32768 through 32767.

finol-value is the number which is used in the test. If the counter-variable contains a value
greater than final-value, the looping is ended. The legal range for this number is -32768
through 32767.

STEP increment-value is an optional clause. The increment-value indicates by how much to
increase or decrease the counter-variable each time through the loop. This must be an
integer in the range - 32768 through 32767. If the entire clause is omitted, then

the increment-value is assumed to be one.

This is a lot to handle, so let's observe the behavior of some simple, sample programs. The first
program is similar to the version of the CHUG CHUG program which used a counter. Instead of
"chugging" we print the value of the counter-lJariable C:

15 FOR C = 1 TO 10
30 PAUSE C
50 NEXT C

(To make this program "CHUG" as before, simply insert statements 10,20, and 30 from that
program). Notice that this version is neater and more concise using fewer statements to accom­

plish the same counting and looping functions than the older version.
In case there is still some residual confusion about what the FOR and NEXT statements are

doing, we present a comparison of a FOR ... NEXT loop with the equivalent statements:

51

10 FOR 1= 1 TO S

20 [some statements
to be repeated 1

90 NEXT I

100 END

10 1=1

12 IF I>STHEN 100

20 [some statements to
be repeated 1

90 I = 1+1

92 GOTO 12

100 END

Our second sample program illustrates how one may program a "general loop", whose repeti­
tions are controlled by the value of a variable. We begin by asking the user how many numbers
he/she plans to enter. We store this number in a variable N and we proceed to loop through the
statements which take in a number for processing. The loop is executed N times, unless N is
less than or equal to zero, in which case we END without further processing.

Program Listing:

10 N = 0 : V = 0 T = 0 A = 0

20 WAIT 0

30 INPUT "HOW MANY VALUES? "; N

40 IF N = 0 THEN GOTO 999

50 FOR 1= 1 TO N

60 CLS : CURSOR 0

70 INPUT V

SO T = T + V

90 NEXT I

100 WAIT: CLS CURSOR 0

110 A = T / N

120 PAUSE "TOTAL = "; T

130 PRINT "AVERAGE = "; A

999 END

Keystrokes:

OJ rn [][) m rn I SHIFT lornm rn I SHIFT lornm rn
ISHIFTJ 0 rn m rn IENTERI

aJ rn 00 rn IT] rn rn I ENTER I

rn rn IT] [][) IT] [[] rn I SHIFT I~m [Q] 00 I SPACEI o;u rn [][)
rn ISPACEI rn rn IT] [[] w W I SHIFT I CD ISPACEI

I SHIFT I~ I SHIFT I o:::J [][) I ENTER I

mrnIT]ITJ[][)mrnrnmW[][)[§][Q]rn[Q]
[]J []J []J IENTER I

m rn ITJ [Q] [[] IT] @] OJ rn [Q] [][) I ENTER I

m rn W IT] W I SHIFT lOW [[] [[] W [Q] [[] rn IENTERI
rn 00 IT] [][) IT] [[] rn rn I ENTERI

52

w rn rn 0 rn rn m [ENTERI

[[] rn OD m CD rn IT] IENTERI

OJ W rn IJi[J w IT] rn ISHIFT I CD W CIJ m ISHIFT I CD

W []] 00 W CQJ 00 W IENTER I

OJ OJ rn rn 0 rn CZJ OD IENTERI

OJ m w m rn []] w m ISHIFTI~ rn CQJ rn rn CIJ
ISPACEl01sPACEli SHIFT I~ I SHIFTI CJ
rn [ENTERI

OJrnwmOOIT]ODrnISHIFTI~rnmmOOrnmm

ISPACEI 0 [SPACEII SHIFTI~ I SHIFT! CJ

rnIENTER!

The FOR ... NEXT loop need not always increment the counter-variable by 1 nor always
initialize it to 1. Using the STEP clause, the programmer may specify the size of the increment
(or decrement). Our next example program demonstrates this and brings back memories of high
school cheerleading:

Program Listing:

10 WAIT 30

20 FOR HS = 2 TO 8 STEP 2

30 PRINT HS; "! ";

40 NEXT HS

50 WAIT 60 : CLS : CURSOR 0

60 PRINT "WHO DO WE APPRECIATE?"

70 PRINT "SHARP PC-15001 "

80 END

Keystrokes:

OJ rn IJi[J rn IT] rn rn rn IENTER I

mW[TICQJOOCBJw0mrnCQJWmrnmm

m IENTER I

rn rn m 00 CD OD rn CBJ w I SHIFTI CJ ISHIFT I~

ISHIFT I OJ ISPACEI! SHIFTI~ I SHIFT I CJ

IENTERI

m rn OD w CD rn CBJ m IENTER I

m w IJi[J rn IT] rn []J w ISHIFT ICD W CIJ m ISHIFT! CD

W []] 00 rn CQJ []J rn IENTER I

[]J rn m []J CD OD rn I SHIFT I~ IJi[J CBJ CQJ ISPACEI [Q] [Q]

ISPACEIIJi[J W ISPACE! rn m m []J w W IT]

rn rn w I SHIFT I rn I SHIFT I~ IENTER I

53

CD 00 CD OD OJ 00 m ISHIFT I c:::J CD [J[] 00 [JjJ m ISPACEI

m m G IT] rn 00 00 ISHIFT I OJ ISHIFT I c:::J IENTER I

[[J rn CD 00 rn IENTER I

In addition to counting up, the STEP clause also allows SHARP to count down. This is done
by reversing the initial and final values and specifying a negative increment. The following
program, (dedicated to consumers everywhere), illustrates this:

The Coverup Carpet Emporium is offering rugs to the LAO INN at the amazing, low price
of $.99 per square foot. The rugs range in radius from 40 feet (for the hotel lobby) to 1
foot (for the bathrooms). Between each rug and the next smaller size is a gap of three feet
in radius. Mr. Crafty Consumer decides to price each rug using a program on his SHARP
computer. He writes the following program:

10 FOR R = 40 TO 1 STEP -3

20 P = .99 * (PI *R 1\ 2)

30 PRINT R; " FOOT MODEL IS $"; P

40 NEXT R

50 END

and discovers that the rugs range in price from $4976.2 to $3.11.

(@1~)

The WAIT statement allows the programmer to change the operation of the print statement.
Information displayed by a PRINT statement will remain on the display for the time period
specified by the WAIT statement.

The format for the WAIT statement is:

WAIT argument

The argument is optional. If no argument is specified, the default time period is "infinite";
that is, the information will remain on the display until the user presses IENTERI • This is the
mode of operation used in most of our programs to this point.

If an argument is given all subsequent PRINT statements will "hold" their information on the
display for a time period proportional to the number specified as an argument. This type of
printing is similar to the PAUSE statement, except that the time period of the PAUSE statement
is fixed. Notice that the WAIT statement has no effect on the operation of the PAUSE statement.

The number (or expression which results in a number) given as an argument must be in the
range 0 to 65535. WAIT 0 causes information to be displayed so fast that it is virtually
unreadable. WAIT 65535 will cause each PR INT statement to display its information for about
17 minutesl More practically, WAIT 64 gives a period of about a second, and WAIT 3840 about
a minute. To reset the operation of the PRINT statement, so that it waits until the user presses
enter, use the instruction WAIT with no argument.

Demonstration Program

This program illustrates the effect of the WAIT statement on subsequent PRINT statements.
Here we vary the WAIT time from 0 to 102 by increments of 2 while printing periods in a loop.
The BEEP is solely to aid you in comprehending the time interval, since some of the action
happens too fast to be seen.

54

Program Listing:

10 FORW=OT0102STEP2

20 WAIT W

30 BEEP 1,5

40 PRINT". ";

50 NEXT W

60 END

Keystrokes:

rnOOWWwooGoornWrnoornrnrnmw

rnlENTERI

rn 00 00 DO OJ rn 00 IENTERI

rn rn w m m w rn ISHIFT I c::.u [[] IENTERI

m [[] w W OJ 00 rn I SHIFT I [:::::J 0 ISHIFT I [:::::J

I SHIFr! CO IENTER I

[[] 00 00 m CXJ rn 00 IENTER I

rn rn moo [[J IENTERI

)

Not all data within a program must be entered by the user of the program. Often, useful data
is relatively static, such as tax tables within a financial application or stress constants in an
engineering application. These types of information may be embedded within a program, and
utilized when needed, through the use of the DATA, READ, and RESTORE statements. These
statements act in concert to specify the data used by a program, to transfer the data into variables,
and to repeat the process as necessary.

The DATA statement consists of the keyword DATA followed by a list of data items. These
include numbers, in real or scientific notation, and character strings. The items in the list are
separated by commas. Data statements may appear anywhere within a program, but many
programmers prefer to group them at the beginning of the program. This enables them to be
found more easily when the program is read.

A typical DATA statement might resemble the following:

10 DATA "MOBY DICK", 20000, "WHITE", "M", 112

The READ statement consists of the keyword READ followed by a list of variable names.
These may be numeric or character variable names. The variable names within the list are
separated by commas. The READ statement causes an item, or items, of data to be "read" from
a DATA statement and stored in the associated variables. A READ statement corresponding to
our previous DATA statement is:

120 READ N$, WT, C$, SX$, L

SHARP insists that every time a READ statement is executed there be a corresponding data
item within a DATA statement. Thus, the following program will produce an error on line 30
because all of the data items have been "used up" by the READ statement on line 20:

55

10 DATA 1,2,3

20 READ A, B, C

30 READ D

To correct this situation, we may add a data item to line 10:

10 DATA 1,2,3,65

....QLwe may use a separate DATA statement, anywhere within the program:

10 DATA 1,2,3

20 READ A, B, C

30 READ D

40 DATA 65

This illustrates that SHARP views all of the DATA statements within a program as a single list
of data items. As the computer encounters each variable name within a READ statement, it
assigns the next data item from the list to that variable. If SHARP cannot fulfill a request for a
data item it stops the program and signals an error. Extra items which are unused when the
program finishes in a normal manner, are ignored.

If the type (character or numeric) of the next item does not match the type of the variable
to be filled, an error will occur. Good programmers group data items into separate DATA state­
ments, each of which corresponds to its READ statement within the program. This is illustrated
in the following program which reads three data items four times:

10 DATA 1, "A", 1

20 DATA 2, "B", 3

30 DATA 5, "C", 8

40 DATA 13, "D", 21

50 FOR 1=1 TO 3

60 READ A, A$, Z

70 T=T+A*Z

80 NEXT I

Lines 10 through 40 could have been written as:

10 DATA 1, "A", 1, 2, "B", 3, 5, "C", 8, 13, "D", 21

or even as:

10 DATA 1

20 DATA "A"

30 DATA 1

40 DATA 2

(etc)

Both of these alternate forms obscure the fact that three data items are read, each time, by the
READ statement. The alternate forms also make it more difficult to verify the types of the data

56

items since the pattern of: number, character, number is not immediately discernible.

Sometimes it is desirable to re·use some or all of the values in the DATA statements. The
RESTORE statement allows us to do this. RESTORE causes SHARP to re·use data items
beginning at the first DATA statement of the program. Thus, any READ statements performed
after the RESTORE will receive data items which were used previously.

The RESTO REstatement may also specify a more selective "recycling" of data items. The
statement:

RESTORE line·number

will cause data items to be re·assigned beginning at the DATA statement on the specified line. For
example:

10 DATA .8, 4

15 DATA 1,3,6,8E2

100 READ X, Y

110 READM,N,O,P

120 RESTORE 15

130 READ A. B

When this program finishes, the values of the variables A and B will be 1 and 3, respectively.

In addition to line numbers, DATA statements may be "labeled" with a single character.
The RESTORE statement may then be used to re-issue data items beginning at the DATA state·
ment with the given label. An example of a labeled DATA statement is:

20 "A" : DATA 1 , -12 . 2 , 8

The following program segment RESTOREs back to the DATA statement labeled "X":

10 DATA 4. 2 , 3 , 1

20 "X" : DATA -2, 0 , 3 , 5

100 READ 0, Y, Z

110 READ MA, MB, MC, MD

120 RESTORE "x"
130 READ N, Z

At the end of the program N contains -2 and Z contains O•

..
The REM statement provides the capability to insert comments among the statements of a

program. Although these comments are ignored by SHARP, they are extremely important
because they assist other human beings to read your program. The more easily your program is
read and understood, the more other programmers will wish to use it and, perhaps, improve it.

To lessen the typing burden, we have omitted comments in this manual. We recommend that
you do NOT follow our example. Comments are probably most important when you are printing,
saving, or sharing your programs. Do not rely on your mental ability to remember what the
meaning of each variable in a program is, use a commentl If you don't, six months from now
you will have forgotten.

57

Comments, following the R EM keyword, may be inserted on their own line or at the end of
another statement or series of statements. Comments may not appear before or in the middle of
executable statements. The reason for this is that when SHARP sees the REM keyword it ignores
any characters on the rest of the line. If REM were used at the beginning of a line, valid program

statements would be ignored.

(Va ~aa~)

As you begin to design programs, you will find that you utilize certain functions repeatedly

within a single program. For example, such functions might include calculating the area of a circle
or accepting and checking a number given by the user. Such repetition causes duplication of the
statements which perform the function. To avoid this wasteful duplication, the programmer may
use the GOSUB statement.

The GOSUB statement allows a group of other statements, which are used in several places
within the program, to be set aside. This group of statements is called a "subroutine" (hence
the term GOSUB). At each place in the program where the group of statements would occur,

a GOSUB instruction is inserted.
The GOSUB statement instructs SHARP to begin executing the group of statements which

have been set aside. This process is known as "calling a subroutine". Because the GOSUB state­
ment causes a change in the normal sequential flow of execution, it is similar to the GOTO
statement. The difference, however, is that before SHARP begins to perform the statements
of the subroutine it "remembers" where it was. When the computer finishes performing the
subroutine it returns to the point where it left off. This is known as "returning" from a

subroutine.

But how does SHARP discern the end of the statements which form the subroutine? The
answer is that you must inform it with the RETU RN statement. The form of the GOSUB state­

ment is:

GOSUB line-number

where line-number is the number of the first line of the subroutine. The form of the RETU RN
statement is simply:

RETURN

As an example of a subroutine in action, consider a program to compute and compare the area
of two rectangles given the length and width of the sides:

Program Listing:

10 REM READ IN LENGTH AND

20 REM WIDTH OF TWO RECTANGLES

30 FOR I = 1 TO 2

40 PAUSE "RECTANGLE"; I ;" : "

50 INPUT "ENTER LENGTH, WIDTH", L, W

60 GOSUB 200

70 I F I = 1 LET A1 = A

80 IF 1=2 LETA2=A

90 NEXT 1

58

100 REM PRINT AND COMPARE THE

110 REM AREAS OF THE RECTANGLES.

120 PRINT "AREA OF RECTANGLE 1 ". A1

130 PRINT "AREA OF RECTANGLE 2 ". A2

140 IF A1>A2 THEN 170

150 PRINT "AREA OF 2 IS > AREA 1"

160 GOTO 180

170 PRINT "AREA OF 1 IS > AREA 2"

180 END

200 REM SUBROUTINE TO COMPUTE AREA

210 REM OF RECTANGLE GIVEN LENGTH

220 REM OF SIDES IN LAND W

230 A = L* W

240 RETURN

Notice where the subroutine is located. All subroutines should be placed after the final END
statement of the main program. This prevents their accidental use by the normal process of
sequential execution. A RETU RN statement MUST terminate each and every subroutine.

A subroutine may include any legal statement and may perform any kind of processing
desired. Good BASIC programmers design their programs as a set of pieces, or "modules".
Usually a subroutine is used to encode each module. The main program is then used to control the
order in which the subroutines are executed. For further information on this approach refer to
one of the books on structured programming listed in Appendix F.

1) Program lines should be numbered in intervals of, at least, ten. This will allow an additional
line to be inserted between any two existing lines merely by choosing a line number which lies
in between the line numbers of the existing lines. For example, to insert a line between lines 40
and 50 give the new line a number from the set 41 through 49.

2) To delete an existing line, simply type its line number and press IENTERI .

NOTE: Because several program statements may be grouped together on a single line, great
care must be exercised when deleting lines.

3) The Up Arrow and Down Arrow keys may be used to scroll (move up or down) through the
current program a line at a time. Holding either Arrow key down will cause automatic repeti­
tion of the movement.

4) The LIST command may be used to proceed directly to a given line. The command LIST will
display the first line of the first program in memory. LIST N (where N is a number), will
display line N or, if no line numbered N exists, the first line whose number is greater than N
is displayed.

5) Once a line is displayed, the Left and Right arrow keys may be used to position the cursor
anywhere on the line. The INSert and DELete functions may then be used to affect changes.

NOTE: If changes are made to a line, it is necessary to press ENTER before displaying the next
line or all changes will be nullified (not made).

59

6) If an error is encountered in a program during execution, the Up Arrow key will "remember"
the line on which the error occurred. To recall the line, switch to the PROgram mode and
press the Up Arrow key.

A. Scientific Notation

To enter a number in scientific notation (A X 101\ B), enter the mantissa, press the letter CTI
and enter the exponent.

Example 1: To key in 6.7 x 101\ 8:

Keystrokes Display

1
6. 7

1
6. 7E

1
6. 7E8

Example 2: To key in: -9.12 x 10 A -34:

Keystrokes

1-9. 12

1-9.12E

1-9. 12E-34

Only the first 10 digits of the mantissa are significant (see example). For a number smaller than
1 but larger than -1 the data is accurate to a maximum of 10 digits.

Example 3: Key in 1234567898765:

Keystrokes

rnmrnwrnmrnrn

1234567898765 I

1.234567898E 121

60

Example 4: Key in 9.87654321234:

Keystrokes Display

w0rnrnmmrn

rnmOJmrnrn
1
9. 87654321234_ I

IENTERI I 9. 8765432121

Example 5: Key in 0.0000000002345678:

Keystrokes Display

00000000000

oooooooomrn

rnmmrnrn I· 0000000002345678 I
IENTER I

I 2. 345678 E-l 01

Example 6: Key in 0.00001234567 x 10 /\ 24:

Keystrokes Display

0000000000Jm

rnrnmmrnmmrn I· 00001234567E24_ I
IENTERI

I
1. 234567E 19

1

Notice that for exponents, only the last two digits typed are effective.

Example 7: Key in 3 x 10/\ 123:

Keystrokes

rnmOJmrn

Example 8: Key in 4 x 10/\ - 3210:

Keystrokes

3E 231

61

14E-3210_

4E- 10 1

B. Range of Calculations

Most machines have a range of numbers with which they can operate. in the PC-1500. this
range is any number between 9.999999999 x 10 1\ 99 and -9.999999999 x 10/\ 99. When a
number exceeds this range it becomes too large for the computer to handle and an "overflow"
condition (signalled by error 37) occurs. There is also an "underflow" condition; the point at
which a number becomes too small. An underflow condition will not be signalled; no error
message or halt will occur. Any number which falls into the range of -1 x 10/\ -99 to 1 x
101\ - 99 will be regarded as zero. This is illustrated by the following chart:

-9.999999999 x 10 1\ 99

-1 x 10/\ -99

o

1 x 101\ -99

9.999999999 x 101\ 99

ERROR COMPUTATIONAL REGARDED
RANGE AS ZERO

COMPUTATIONAL ERROR
RANGE

Example 1: If you try to solve the equation (5.67 x 10/\ 55) * (8.90 x 10/\ 65). you will
cause an overflow:

Keystrokes

CD m GJ []] ITJ[TI m m c::o rn

Error 37 indicates calculation overflow.

C. Root, Power, Pi

Root

Example 1: To find the square root of 73:

Keystrokes

Example 2: To find V256 :

Keystrokes

62

Display

(5. 67E55) * (8. 90E65)_

ERROR 37

Display

1~"==73==_===================1
I 8. 544003~

Display

1'---- 41

Keystrokes

mrn mITJ

1
5

This equation can also be computed in the following manner:

Example 4:

Power

Keystrokes

ISHIFT I [£] [IJ CD ISHIFT I~ CD [£] m
ISHIFT I~ CD ITJ
IENTER I

1
5_

The power, or exponentiation function, permits you to raise a number to a power.

Example 1: Calculate 4/\3 (= 4 x 4 x 4) :

Keystrokes

1'--- 6_4 1
Example 2: Calculate 3/\ 3.2 x 4 /\ -2.4:

Keystrokes

I 1. 207380162

Example 3: Calculate 4/\(3 1\ 2):

Keystrokes

I 262144

63

PI 00

The value of Pi (3.141592654) is stored in both the symbols PI and 00 as a fixed constant.
Either symbol can be used in calculations where the value of Pi is needed.

As an example, to find the area of a rug which has a diameter of five feet, in RUN mode key:

Keystrokes Display

1 1_9_0_6_3_4_9_5_4_0_8_1

D. Angular Modes

The PC·1500 allows angular functions to be calculated in any of three angular modes as
follows:

To set the PC·1500 into Degree mode type:

DEG. IENTER I

(DEG will appear at top of the display)

To set the PC·1500 into Radians mode type:

RAD. IENTER I

(RAD will appear at top of the display)

To set the PC-1500 into Grads mode type:

GRA. IENTER I

(GRAD will appear at top of the display)

E. Trigonometric Functions

The six trigonometric functions provided on the PC·1500 are SIN, COS, TAN, ASN, ACS, and
ATN. Each function can be calculated in either the GRAD, DEG, or RAD mode. Execution is
as follows:

GRA. IENTER I----------------+

DEG. IENTERI

SIN 30 IENTER I

SIN 30 IENTER I

Sets mode to degree

SI N 30 in degrees

Clears display

Sets mode to grad.

40 539904997E-01 I~ SIN 30 in grad

@ Clears display

RAD. IENTER I Sets mode to radians

SIN 30 IENTERI 1-9. 880316241 E-01 1- SIN 30 in radians

64

In the above examples, the sine of 30 is computed in each mode, producing three different
(but equivalent) answers. Inverse trigonometric functions can also be performed as follows:

RAD. IENTER ! -----------------+J Sets mode

ASN -0.5 IENTERI

1-5. 235987756E-01 I_____________ Arcsine of -.5

DEG. !ENTERI------------------+ Sets mode

ASN -0.5 IENTERI

ACS (-.5 +.1) IENTER!

ATN 2.3 IENTER!

___________-_3_0_1 Arcsine of -.5

113. 57817851 .
'-------------__ Arccosine

66. 501434321
Arctangent

In the Radians or Grads Mode:

If it is necessary to compute: SIN (X/Yl. COS (X/Yl. TAN (X/Y)

Where: X = Any non-zero number
Where: Y = Any non-zero number

Equate the fraction to a variable thus: P = X/Y

Then: SIN P, COS P, TAN P

F. Logarithmic Functions

LN, LOG

The function LN will compute the natural logarithm (base e) while the function LOG will
compute the common logarithm (base 10). These are executed in the RUN mode as follows:

LN 7.4 IENTERI 2. 001481

LOG 7.4 I ENTER! 8. 6923 171 97 E- 0 1 I
LN 25 I ENTER I 3. 2188758251

LOG 100 I ENTER I 21
EXP

The reverse function of LOG is a number raised to a power of 10. For example:

LOG 100 IENTER!

Because the natural log (LN) is not based on a power of 10 but on a power of e, a reverse
function is necessary. Th is function is EXP.

Example:

LN 7.4 ! ENTER!

EXP 2.00148 IENTER !

65

2. 001481

7.3999999981

G. Angle Conversion

The PC·1500 performs conversions of angles from DMS (Degree, Minutes, Seconds) to DEG

(Decimal Degree) form. When converting Decimal Degrees to the Degree, Minutes, Seconds

equivalent, the answer is comprised of an integer portion representing degrees, and a fractional

portion of which the 1st and 2nd decimal digits represent the minutes, and the 3rd and 4th

decimal digits the seconds. The 5th through end decimal digits are decimal degrees. To convert

an angle given in degree, minutes, seconds into decimal degree form, it must be entered in integer,

decimal order.

Example 1: Convert 16.1932 Decimal Degrees into DMS form:

DMS 16.1932 IENTER I [16. 1 135521

Example 2: Convert 32.2513 DMS into Decimal Degree form:

DEG 32.2513 IENTERI

H. Miscellaneous Functions

ASS

[32. 420277781--_.

The ASS function derives the absolute value of a numerical value or variable.

Example 1:

ASS (25 - 86) IENTERI

Normally, 25·- 86 = -61. The ASS function takes the actual difference of the numbers

to get 61.

INT

The INT function rounds a numeriG value to the largest integer not larger than the numeric

value itself.

Example 1:

Example 2:

(25/3) + 7 IENTERJ

INT (25/3) + 7 IENTER I

(31.62 + 21.18) IENTERI

INT (31.62 + 21.18) I ENTER I

15. 33333333

15

52. 8

52

In Example 2, the answer is not rounded up from 52.8 to 53 because that would make the
answer larger than the original value.

NOTE: Don't forget the order of evaluation. Parentheses should be used if you wish the INT of
the resultant expression. For example, let us alter the previous example, leaving off all

parentheses:

66

Example 3:

INT 31.62+21.18 lEHTERI 152. 18

The computer takes that INT of the first number 31.62 (result: 31) and adds that to 21.18 to
get 52.18. This is slightly different from the first computation, eh?

SGN

For any number X the SGN function returns a value indicating if the number is negative, zero,
or positive. The values are the following:

1 if X>O

0 if X 0

-1 if X < 0

Examples:

5 -10 IEHTERI -51
SGN (5 -10) I EHTERI -1 I

12 -4 IEHTERI 81
SGN (12 - 4) IEHTERI 1 I

15 - 15 IEHTERI 01
SGN (15-15) IEHTERI 01

A. ARRAYS and the DIM Statement

Most of our sample programs to date have used a small number of variables. As you begin to
utilize the full processing potential of the PC·1500 you will discover that variables which hold
a single number can have drawbacks. Perhaps, for example, you are considering a program
which reads in fifty numbers and sorts them. You may quickly conclude that, although the
PC·1500 has more than enough potential variables, there must be an easier way. There is, and
it is called an "array variable".

An array is simply a group of consecutive storage areas, or "locations", with a single name.
Each storage area can hold a single number or each storage area can hold a character string. All of
the storage areas within a given array must hold the same type of data.

The number of locations within a single array may be as many as 256 and is determined by
your specification. Thus, if you define a numeric array with 50 locations, this allows you to store
up to 50 numbers in association with a single name. If you define an array of strings (called a

67

"character array") you may also specify the size of the strings, up to a maximum of 80 characters

per string. Creating character strings of varying sizes is described in Section B.l.

To define an array, the DIM (short for dimension) statement is used. Arrays must always be
"declared" (defined) before they are used. (Not like the single-value variables we have been using.)
The form for the numeric DIMension statement is:

DIM numeric-variable·name (size)

where:

numeric-variable-name is a variable name which conforms to the normal rules for numeric
variable names previously discussed.

size is the number of storage locations and must be a number in the range a through 255. Note

that when you specify a number for the size you get one more location than you
specified.

Examples of legal numeric DIMension statements are:

DIM X (5)

DIM AA (24)

DIM 05 (0)

The first statement creates an array X with 6 storage locations. The second statement creates

an array AA with 25 locations. The third statement creates an array with one location and is

actually rather silly since (for numbers at least), it is the same as declaring a single-value numeric

variable.

It is important to know that an array-variable X and a variable X are separate and distinct to

SHARP. The first X denotes a series of numeric storage locations, and the second a single and
different location.

Now that you know how to create arrays, you might be wondering how it is that we refer to
each storage location. Since the entire group has only one name, the way in which we refer to
a single location (called an "element") is to follow the group name with a number in parentheses.

This number is called a "subscript". Thus, for example, to store the number 8 into the fifth
element of our array X (declared previously) we would write:

X (4) = 8

If the use of 4 is puzzling, remember that the numbering of elements begins at zero and continues

through the size number declared in the DIM statement.

The real power of arrays lies in the ability to use an expression or a variable name as a sub­

script. For example, to create a table containing the squares of the numbers a to 9 we could
write the following statements:

10 DIM SO (9)

20 FOR I = a TO 9

30 SO (I) = I *I

40 NEXT I

68

In this example, the variable I is used to select which storage location will hold the result
and it is also being used to compute the result.

To declare a character array a slightly different form of the DIM statement is used:

DIM character-variable-name (size) * length

where:

character-variable-name is a variable name which conforms to the rules for normal character
variables as discussed previously.

size is the number of storage locations and must be in the range a through 255. Note that
when you specify a number, you get one more location than you specified.

* length is optional. If used, it specifies the length of each of the strings that comprise the
array. Length is a number in the range 1 to ao. If this clause is not used, the strings
will have the default length of 16 characters.

Examples of legal character array declarations are:

DIM X$ (4)

DIM NM$ (10) * 10

DIMIN$(l)*aO

DIM R$ (0) * 26

The first example creates an array of five strings each able to store 16 characters. The second
DIM statement declares an array NM with eleven strings of 10 characters each. Explicit definition
of strings smaller than the default helps to conserve memory space. The third example declares
a two element array of aO-character strings and the last example declares a single string of twenty­
six characters (see Section B.l.).

Besides the simple arrays we have just studied, the PC-1500 allows "two-dimensional" arrays.
By analogy, a one-dimensional array is a list of data arranged in a single column. A two-dimen­
sional array is a table of data with rows and columns. The two-dimensional array is declared by
the statement:

DIM numeric-variable-name (rows, columns)

.2!:.
DIM character-variable-name (rows, columns) *length

where:

rows specifies the number of rows in the array. This must be a number in the range a through
255. Note that when you specify the number of rows you get one more row than the
specification.

columns specifies the number of columns in the array. This must be a number in the range a
through 255. Note that when you specify the number of columns you get one more
column than the specification.

The following diagram illustrates the storage locations that result from the declaration DIM T
(2, 3) and the subscripts (now composed of two numbers) which pertain to each storage location:

69

column 1 column 2 column 3 column 4

row 0

row

row 2

T (0,0) T (0, 1) T (0,2) T (0,3)

T (1, 0) T (1, 1) T (1,2) T (1,3)

T (2,0) T (2, 1) T (2,2) T (2,3)

NOTE: Two-dimensional arrays can rapidly eat up storage space. For example, an array with 25
rows and 35 columns uses 875 storage locations!

Arrays are very powerful programming tools. For a more complete treatment of arrays, we

recommend supplementary reading.

B.1. DIMensioning Strings

Character strings are limited, by default, to sixteen characters in length. By dimensioning a

character string it is possible to create a string whose length is up to 80 characters. Reductions

in string length, to conserve memory space, are also possible.

The length of a string is specified in the DIMension statement as follows:

DIM variable-name (bound) * length

where:

variable-name is the name of the character string array.

bound is the maximum subscript of the array.

length is the length of each string within the array.

If only one string is needed, an array with one element (subscripted as element zero) may be

specified to conserve memory space. This is illustrated by the following declaration of a 26
character string:

DIM A$ (0) *26

B.2. Concatenation

Several character strings (or characters within character variables) can be joined to form a single
string. This "adding" of character strings is called "concatenation". The form for concatenation

is:

variable

Example 1:

character-string + character-string
character-variable character-variable

10 S$ = "SUPER"

20 T$ = S$+ "MAN"

30 PRINT T$

70

Output:

SUPERMAN

In line 20, the contents of the variable S$ ("SUPER") is "added" to the string "MAN". Notice
that no space is inserted during concatenation. Several strings may be concatenated in the same
expression as in the following example:

Example 2:

10 A$ = "ER"

20 B$ = "AND"

30 C$ = "MOTH"

40 D$ = "GR"

50 S$ = "WRITE YOUR "+D$+B$

60 PRINT S$ + C$ + A$
Output:

WRITE YOUR GRANDMOTHER

When concatenation operations are performed, an internal temporary character storage area is
used to build the new string. This storage area has a capacity of 80 characters. If the new string
exceeds this length, an ERROR 15 will occur. An illustration of this area during a concatenation
operation follows:

Example 3:

x = LEN ("ABC" + LEFT$ ("DEFGHI", 2)) :ENTER!

t

2 I ABC
t

3 GBCDEFGHI
t

4 GB_C_D_E _
t

5

t

NOTE: The t symbol represents an internal character pointer which keeps track of the amount
of storage used.

1) At the start of execution, the storage area will be cleared and the character pointer will be
reset to the starting position.

71

2) "ABC" is entered into the area, taking up the first three positions.

3) "DEFGHI" is added to the character storage area, following "ABC".

4) The LEFT$ function acts upon the string "DEFGHI" to extract "DE", which then replaces

"DEFGHI" in the area.

5) The assignment is performed and the storage area is again cleared.

B.3. String Comparison

Character strings may be compared to determine which string is "greater" or "less than" the

other. These determinations are based on the Collating Sequence (given in Appendix C) which

is the order of all the characters recognized by the computer.

If the strings contain an unequal amount of characters, the shorter string is "padded" (filled

out) with NULL characters (ASCII 0). The operators which are legitimate for comparison of

strings are:

True if the two strings are equal in length and contain the same characters in the

same order.

<> True if the two strings differ in length, characters, or ordering of characters.

> True if the characters of the first string are "greater" (occur later in the ordering) than

the characters in the second string.

< True if the characters of the first string are "less than" (occur first in the ordering)

than the characters in the second string.

The format for string comparison is:

character string

character variable
OP

character string

character variable

where OP is one of the comparison operators listed above.

Examples:

"MARY" > "MARl" is True

"MARY" = "MARY " is False

"abc" <> "ABC" is True

"DATA 1" < "DATA 2" is True

"?" < 1'#" is False

Note: The form of A$ <= B$, A$ >= B$ cannot be used for comparing character strings.

Comparison is possible however, in the forms of (A$ < B$) OR (A$ = B$) and (A$ >
B$) OR (A$ = B$).

C.1. ASC

There are two functions used in the coversion of characters to and from the ASCII code. The
function ASC converts a single characte"r into its ASCII decimal code. The reverse function CH R$
converts the ASCII decimal code into a single character string.

72

ASC {
"character"

char variable name

The argument in this function is any character string or a character string variable name. The
value returned by this function is the corresponding ASCII code for the first character of the

specified string.

Example 1:

10 LET X$ = "PATTI"

20 LET A = ASC X$

30 PRINT A

Output:

RUN

In the above.example X$ is assigned the value of the character string "PATTI". The ASC function
takes the first character (P) and converts it to its ASCII code (80).

Example 2:

10 PRINT ASC "K"

RUN

ASC "K" returns the ASCII code for oK" which is 75.

C.2. CHR$

CH R$ is the complement of the ASC function. The CH R$ function takes an ASCII decimal
code, from 0 through 127, and returns the character string equivalent. (Note: Some codes
represent special characters which do not print)

Example 1:

CHR$
J ASCII. decimal code

1 numeric variable

Output:

10 PRINT (CHR$ 67) + "OP"

I COP

73

RUN

Example 2:

10 Z = 65

20 PRINT CHR$ Z

Output:

RUN

The first example shows the use of an ASCII decimal code as an argument. The result is con­
catenated to the string "OP" producing "COP". The second example assigns a numeric value
to the variable Z. The variable name is then used as the argument, resulting in the character "A".

Our next sample program converts the upper case characters in a text string to lower-case using
both the ASC and the STR$ functions:

Example 3:

5 WAIT 0

10 INPUT "ENTER MESSAGE", M$

20 FOR I = 1 TO LEN (M$)

30 T$ = MIDS (MS, 1,1)

40 L = ASC (T$)

45 IF (L < 65) OR (L> 90) THEN 60

50 T$ = CHR$ (L + 32)

60 PRINT T$;

70 NEXT I

80 WAIT: PRINT

C.3. INKEY$

This function takes in any character from the keyboard and stores it in the specified variable.
There is no need to press IENTERI because the character will be automatically accepted.

variable = INKEY$

During execution of this statement a prompt character is not displayed unless a previous
PRINT statement is used. The input character is not echoed back to the display and the display
remains unaffected.

Example:

1.0" WAIT .0"

20' A$ = INKEY$

3.0" IF A$ =" "THEN PRINT "NO KEY": GOTO 2.0"

4.0" PRINT AS

50' GOTO 20'

This function will only accept one character. If more than one is keyed, only the first character
will be read in; all others will be ignored.

74

C.4. LEN

While manipulating characters, it is desirable to know the number of characters in a string. This
can be done by the use of the LEN function. It returns the number of characters in a specified
expression or character variable.

"character string"
LEN

character variable name

Example 1:

10 A$ = "CATHY"

20 C = LEN A$

30 PRINT C

Output:

RUN

-I5

Example 2:

10 C = LEN "CAT"

20 PRINT C

Output:

RUN

3-1
If LEN is used on an empty string (i.e. nothing is enclosed in the quotation marks), zero will be
returned.

Example 3:

10 A = LEN" "

20 PRINT A

RUN

C.5. LEFT$

There are three functions used to select or extract specified sections of a character string.
LEFT$ extracts characters from the left, RIGHT$ from the right and MID$ from the middle.

LEFT$
("character string", number)

(character variable name, number)

75

The "number" argument specifies how many characters to extract beginning from the left
side.

Example 1:

10 AS = LEFTS ("DRESSER", 5)

20 PRINT A$

RUN

DRESS

Example 2:

10 B$ = "THINK BIG"

20 A$ = LEFT$ (B$,4)

30 PRINT A$

I TH I N
RUN

In both examples, starting from the left side of the character string, characters are extracted and
stored in A$. Printing A$ results in "DRESS" and "THIN" respectively.

e.6. MID$

To extract the middle portion of a character string the function MID$ is used.

Example 1:

MID$ {
("character string", expression, expression)

(character string variable, expression, expression)

Output:

Example 2:

10 A$ = "I NEED HELP"

20 B$=MID$ (A$,3,4)

30 PRINT B$

RUN

NEED

10 T$ = MID$ ("(415) 743 -1602", 6,3)

20 PRINT T$

1743
RUN

76

The first argument to this function is a character string or a character string variable. The second
argument is a number representing the first character to be extracted. The third argument is the
total number of characters, including the first, to be extracted.
In the first example, "I NEED HELP" is stored in A$. MID$ extracts four characters beginning
at the third, and places these into B$. When B$ is printed, it is found to contain "NEED".
In the second example, a string containing a telephone number is the first argument. The sixth
character ("7") is located and, together with the following two characters, is stored in the variable
T$. When printed, the result is "743".

C.7. RIGHT$

The RIGHT$ function works much like LEFT$, the only difference being that it starts from
the opposite (right) end of the string. The arguments are the same as LEFT$:

RIGHT$
("character string", number)

(character variable, number)

The "number" argument to this function specifies how many characters to extract from the
character string beginning on the right side.

Example 1:

10 X$ = "READ ONLY MEMORY"

20 Y$ = RIGHT$ (X$, 6)

30 PRINT Y$

In this program the R IGHT$ function takes six characters from the right end of the string and
stores them in the variable Y$. The content of Y$ is now "MEMORY".

C.S. RND

There may be times when you want to provide your program with random numbers. The RND

functions allows the computer to generate random numbers in a range from one to a specified
number. (Note: The range always starts with one)

Example 1:

10 A = RND 5

In this example A could have anyone of the values one through five, inclusive. If you want
random numbers in a range whil:h begins with a number other than 1, (for example 40 to 50)
you will have to simulate this by generating random numbers from 1 to 10 and adding a constant
(39 in our example):

Example 2:

10 FOR 1=1 TO 5

20 B=40+RND 10

40 PRINT B;

50 NEXT I

Output:

142
RUN -I44 47 48 42

77

e.g. RANDOM

Random numbers are generated by a mathematical formula and are accessible by using the
RND function. Whenever the computer is turned ON, a series of random numbers is generated
by the computer. This list remains unchanged unless the RANDOM function is used. This means
that a program will use the same series of "random" numbers each time the computer is turned

on. To prevent this, the RANDOM function resets the "seed" used by the formula to generate

its random numbers.

Example 1:

10 FOR 1=1 TO 5

15 A=RND 3

20 PRINT A;

30 NEXT I

Example 2:

10 FOR I = 1 TO 5

15 A=RND 3

20 PRINT A;

30 NEXT I

Output: 12231 Output: 12231

To get true random numbers in this case the function RANDOM should appear before the RND

statement. This function sows a new seed in the generation of random numbers and thus causes
the numbers to differ. Accordingly, a program run under identical conditions will produce varied
output:

Example 1:

10 RANDOM

15 FOR 1=1 TO 5

20 A = RND 3

30 PRINT A;

40 NEXT I

Example 2:

10 RANDOM

15 FOR 1=1 TO 5

20 A = RND 3

30 PRINT A;

40 NEXT I

Output: 31223 Output: 23132

e.10. STR$

STR$ works in a manner opposite to VAL. It will convert an internal numeric variable back to
its character string representation.

Example:

10 INPUT "ENTER A NUMBER "; I

20 S$ = STR$ (I)

30 PAUSE "THAT NUMBER IS"

40 PRINT "THE STRING "; S$

The above program accepts a number, forms the character representation of that number and
stores it in the character variable S$. Because the internal numeric representation cannot be
displayed it is automatically converted back into a character string by the PRINT statement.

78

C.11. STATUS

To display how much program memory you have left available or how much memory a
program uses, the STATUS function is used.

STATUS 0 IEHTERJ
will display how many program "steps" are still available.

STATUS 1 IEHTERI
will display the number of steps already used.

STATUS 21EHTERI
will display the memory address where the current program ends. Note that this address is
actually one greater than the actual address where the program ends.

STATUS 31EHTERI
will display the memory address where variable are stored. Note that this address is actually
one location less than the actual address where variables are stored.

STATUS 4 IEHTERI - STATUS 100 !EHTERI
will display the program line number that was being executed when program execution was
halted.

MEM IEHTERI
The MEM command is equivalent to the instruction STATUS 0 IEHTERI .

Program. data memory

STATUS 21EHTERI

ISTATUS 1 ,..".,

ltT-'-'-'-'-'-'-'-'-'-'-'-'r.LLr.LLr.LLt.LLL./j

Free area

STATUS 01EHTERI

STATUS 3 IEHTER I

Free area: is obtained by "STATUS 3 - STATUS 2+1".

C.12. TIME

To display or set the month, date, and hour the TIME function is used in the following manner:

Setting: TIME = MMDDHH. MMSS IEHTERI

Display: TIME IEHTERI

where: MM represents two digits for the month, DD two digits for the day, and HH two digits
for the hour. The fractional portion defines the minutes (MM) and seconds (SS).

When displaying TIME, the output will be in the same format just given. The result of the
function can be handled in the same manner a~ a number and can also be used freely in
expressions.

79

The following program simulates a clock. Be sure to set the time before running the program.

Program Listing:

10 WAIT 0

20 A$ = STR$ TIME

30 IF TIME> 99999 THEN 50

40 A$ = "0" + A$

50 M$ = LEFT$ (A$, 2)

60 0$ = MIO$ (A$, 3, 2)

70 H$ = MIO$ (A$, 5, 2)

80 OS$ = M$ + " / " + 0$ + " / 82"

90 OS = VAL (M$ + 0$ + "00")

100 PRINT OS$;

110 T=TIME-OS

120 IF T>= 1 THEN 140

130 T = T + 12

140 1FT> 23.5959 GOTO 20

150 CURSOR 18 : PRINT USING "###.####";T

160 GOTO 110

C.13. VAL

VAL and STR$ are complementary functions which convert character strings to and from a

numeric variable. The function VAL converts a string containing the character representation of
a number into a number, which is then stored in a variable.

NOTE: When anything other than a digit 0 thru 9, . (decimal point), + (positive sign), - (nega·

tive sign), or E (scientific notation) is used in the expression, conversion will end with the illegal
character.

Example 1:

Example 2:

10 ZS=VAL "-37"

10 A = VAL "237.6"

Result: ZS contains the number -37

A contains the number 237.6

The USING statement allows a programmer to rigidly control the format of information on
the display. This allows standardized displays and prevents loss of information.

When the USING clause appears, alone or within a PRINT or PAUSE statement, it defines
the format for all subsequent PRINT or PAUSE statements until the next USING clause is
encountered in the program.

Several USING clauses may appear within a single PRINT or PAUSE statement. In this case
each one defines the format to be used to print the listed variables until the next USING clause
is encountered.

A format is specified via a string of special characters called an "editing string". The characters
within the editing string define the areas of the display available for information and restrict the
type of information which may be printed in these areas. This scheme is the same general scheme
employed by other languages such as COBOL and PUI.

An editing string may be stored in a string variable. The variable's name would then replace the
editing string within the USING clause. This allows multiple formats which are selected under
program control.

The characters which may be employed within editing strings are summarized below:

80

Character

*

+

&

Use

Specifies a numeric field. Numbers are right·justified within this field. If

the field width is not sufficient to hold the number, an ER ROR 36 will
occur. Leading zeroes are converted to blanks.

Specifies Asterisk Fill of the specified positions of a numeric field which

do not contain data.

Causes a decimal point to be displayed within a numeric field.

Used at the beginning of a numeric field to specify the insertion of commas
after every three digits.

Used within a numeric field to cause the number to be displayed in scientific

notation.

Used in a numeric field to force printing of the sign of the data.

Specifies a character field. Characters are left-justified within the field. If

the field width is not sufficient to hold the data string, the string is truncated.

NOTE: The width of a numeric field must always be one more than the width of the data to

allow for the sign of the data. This is true regardless of whether you use the + editing character
or not.

NOTE: The use of the comma requires that you insert one extra ~ for each comma in the editing
string.

Examples

x = PI Y = 1234 A$ = "ABCDEF"

PRINT USING "###"; X

PRINT USING "+###. ###"; X

+3. 141

PRINT USING "# # #. # #"'''; X

3. 14E 001

81

PRINT USING .. ### ; X

PRINT USING ..*# # # # # #"; Y

** 1234 1
PRINT USING "***##"; Y

1234J

PRINT USING "&&&&&&&########"; A$;Y

!ABCDEF 1234

PRINT USING "&&&"; A$

10 U$ = ..* # # # # # #. # # ..
20 USING U$
30 PRINT Y; "$"

1** 1234. 00$

PRINT X; "$"

I *****3. 14 $

PRINT USING; A$; X

I ABCDE F 3. 141592654 I

82

PRINT USING "###, ###, ###"; 246813

246, 8131

Note: Use the number of # (including *)marks for variable (integer) designation in the
following range:
With a 3-digit punctuation (,) not used: Within 11 (including sign)
With a 3-digit punctuation (,) used: Within 14 (including sign)
This computer has 10 significant digits for the numbers.
When the format exceeding 10 integers is designated by the USI NG statement and
the figure exceeding 10 integers is displayed (printed) by the PRINT (LPRINT)
statement, the displayed (printed) number may be incorrect.
Example: RUN mode Display

USING" # # # # # # # # # # # # # # "I ENTER I -+ >
PRINT 888888888888 IENTERI -+ 888888888800

(LPRINT 888888888888 IENTERI -I- 88888888880

12 digits

In addition to the basic control statements described in Chapter III, the PC-1500 provides two
other control statements of great utility. These are the ON GOSUB and the ON GOTO. As you
might guess from their names, these statements act like the GOSUB and GOTO statements
discussed previously. The difference, however, lies in their ability to transfer control (i.e. to
execute statements at a different location) automatically. That is, the GOTO or GOSUB functions
will "GO" to one of several statements (or subroutines) depending on the value of a numeric
variable. This dependence on a variable for guidance is what gives the ON statements the
nickname "computed control statements".

The ON statements have the form:

ON expression {
GOTO

GOSUB

line # 1, line #2, line #3, ... (etc)

The expression which follows the ON keyword must evaluate to a positive integer greater than
zero and less than the number of line-numbers listed after the GOTO or GOSUB keyword. During
execution, when the computer encounters an ON statement, it transfers the flow or execution to
the line-number which corresponds to the value of the expression.

A typical ON statement might be:

Qfi TX GOSUB 100,200, 250, 300

In this case, the variable TX MUST contain a number in the range 1 through 4 because there are
only four line·numbers listed. Any other number in TX will result in an error since there is no
corresponding line-number. For this reason, it is important to include sufficient tests (I F state­
ments) to insure that your expressions result in a valid number.

The ON statements are very useful for automating a series of choices. For example, consider
the following program fragment which allows the user to select one of several tax tables. Without
the ON statement this might be written:

83

10 PAUSE "SPECIFY TAX TABLE TO USE:"

20 PAUSE "(1) SINGLE,"

30 PAUSE "(2) MARRIED,"

40 INPUT "(3) BUSINESS ?"; TT

50 IF (TT< 1) OR (TT>3) THEN 10

60 REM USE APPROPRIATE TABLE

70 IF TT = 1 THEN 220

80 IF TT = 2 THEN 300

90 IF TT = 3 THEN 450

(etc)

Using the ON statement we can consolidate lines 70,80, and 90 into a single statement:

70 ON TT GOTO 220, 300,450

ON ERROR GOTO

Using another form of controlled transfer allows a program to detect when an error occurs.
After detection, the program may execute statements which attempt to recover from the error.
Such statements may inform and instruct the user, or they may save valuable data.

The ON ER ROR GOTO statements instructs SHARP where to go upon detecting the
occurrence of an error. The form of this statement is:

ON ERROR GOTO line·number

where line-number is the number of a program line containing instructions to be followed in the
event of an error.

The display window incorporated into the PC-1500 is a remarkably flexible output device. To
allow programmers to exploit the full power of the display several new statements have been
added to the dialect of BASIC used by the PC-1500. These extensions are described in this
section.

The display itself utilizes liquid crystal technology to display up to 26 characters at a time.
Each character in the computer's character set occupies a 5 x 7 dot matrix. Utilizing the GPR INT
command, programmers may develop and display their own characters.

For graphic purposes, the entire display field may be utilized as a 7 x 156 dot matrix.
Individual dots within any of 156 columns may be energized to create graphics, figures, or special
symbols. The POINT command allows "sensing" of any column to discover which dots are
currently energized.

A speaker and tone generator allow the programmer to add the dimension of sound to the
man·machine interaction. Tones may be created at any of 256 frequencies (range 230Hz to about
7KHz). Automatic repetition of a tone and control of the duration of a tone are also possible
under program control.

F.1. BEEP

The BEEP statement allows the programmer to create tones for game playing, error signalling,
and other interactive applications. The format of the BEEP statement which creates sound is:

BEEP expression 1 ,expression 2 • expression 3

84

where:

expression 1 is the only required parameter and specifies how many times the beeping tone is
repeated. The allowable range is 0 to 65535 repetitions.

expression 2 is optional and specifies the frequency of the tone(s). This is a number between
oand 255.

expression 3 is also optional and specifies the duration of each tone. This duration is specified
as a number in the range 0 to 65279.

The B"EEP statement can also be used to turn off and on the PC·1500's internal speaker. Thus,
the noise made by a cassette SAVE or LOAD operation may be eliminated.

The format of the BEEP statement which controls the internal speaker is:

_B_E_E_P_O_F_F I_o_r~

L BEEP ON

NOTE: • When the PC-1500 is turned OFF and then ON the speaker is restored to an active

mode.
• The tones created by BEEP statement may vary depending on the combination

of the expressions.

Demonstration Program

10 D = 60

20 DATA 14

30 DATA 245,1,245,1,160,1,160,1

40 DATA 143,1,143,1,160,2

50 DATA 180,1,180,1,195,1,195,1

60 DATA 220,1,220,1,245,2

100 READ X

110 FOR 1= 1 TO X

120 READ N, S

130 BEEP 1, N, (D*S)

140 NEXT I

150 END

F.2. CURSOR

The CURSOR statement positions the cursor at one of the 26 character positions available
on the display. The form of this statement is:

CURSOR position-expression

where:

position-expression evaluates to a number in the range 0-25 which specifies to where the
cursor will move.

The normal use of the CURSOR command is to position the cursor preparatory to printing
some information. Used in this manner, it allows the programmer to define his own separation
between data items as in the following statements:

85

Program Listing:

10: WAIT 20

20: X = 8

30: PRINT "A"

40: CURSOR 4

50: PRINT "B"

60: CURSOR X

70: PRINT "C"

80: CURSOR ((X/\2)/4)-4

90: PRINT "0"

100: END

Keystrokes:

rn 00 [Y[) m IT] CO rn 00 IENTER I

IT] 00 ITJ @] rn IENTER I

rn 00 m [K) IT] Q[) CO I SHIFT I~m I SHIFT I~ IENTER I

rn 00 w (J[] [K) []] [QJ [[] rn IENTER I

rn 00 m [[] IT] Q[) CO ISHIFT I~ rn I SNIFT I~ IENTERI

rn 00 w (J[] [[] []] [QJ [[] ITJ IENTERI

CD 00 m [[] IT] Q[) CO I SHIFT I~ W I SHIFT I~ IENTER I

rn 00 w (J[] [[] W [QJ [[] m m ITJ ISHIFT I~ IT] CD
[Z] rn CD G rn IENTER I

rn 00m [[] CD Q[) CO I SHIFT I~ [[] ISHIFT I~ IENTERI

rn 00 00 CD Q[) [[] IENTER I

This program will cause the letters A, B, C. and 0 to appear in positions 0, 4, 8, and 12,
respectively on the display:

B c D
RUN

NOTE: Specifying a cursor position greater than 25 or less than 0 will result in an ERROR 19.

86

Demonstration Program

10 WAIT a
20 DIM A$ (0) *13

30 INPUT "ENTER YOUR NAME", A$ (0)

40 C = a : CLS

50 FOR I = 1 TO (LEN A$ (0) - 1)

60 CURSOR C

70 PRINT MID$ (A$ (0), I, 1)

80 C = C + 2

90 NEXT I

100 WAIT

110 CURSOR C

120 PRINT RIGHT$ (A$ (01. 1)

130 END

Keystrokes:

OJ 00 (}i[) m CD ITJ 00 IENTERI

m 00 rn CD 00 m ISHIFT Irn CD 00 CIJ rn OJ Q] IENTER I

Q] 00 CD QD~ em ITJ I SHIFT I~ CTI QD ITJ CTI rn ISPACEI

rn [Q] em [[] ISPACEI QD moo CTI ISHIFT I~

ISHIFT I GJ m ISHIFT I rn CD 00 CIJ IENTER\

rn 00 w @] 00 I SHIFT I CJ W m w (i@

mrnm[Q][[]CD@]OJITJ[Q]comwQDmtsHIFTlrnCOOOCIJ

G OJ CIJ IENTER I

rn rn w em rn w [Q] [[] W IENTERI

WOOw[[]CDQDITJOOCDrnmCOmrnCOooCIJ

I SHIFT I GJ CD I SHIFT I GJ OJ OJ IENTERI

rn 00 w @]w rn mlENTERI

wOO QDCTI[x] ITJ CDIENTERJ

OJ 00 00 (}i[) m CD ITJ IENTER I

OJ OJ 00 w em [[] W [Q] [[] W IENTER!

OJ m rn w [[] CD QD CD [[] CDmoo CO ISHIFT! m

CO m I SHIFT! m CO 00 CIJ I SHIFT! GJ OJ CIJ

87

F.3. CLS (Clear Screen)

The CLS statement erases the display by turning off all of the dots on the window. It is used
before other statements to remove any residual data from the display. The cursor is repositioned

to the left of the screen by the CLS command. The format is simply CLS.

Demonstration Program

10 GPRINT "7F7F7F7F7F"

20 CLS

30 PRINT "NEW INFO"

Keystrokes:

OJ w m m 00 OJ OD m I SHIFT I [::::J CD IT] CD IT] CD IT]

CD IT] CD IT] ISHIFT I [::::J IENTER I

WWmmmlENTERI

Q] w m 00 OJ OD m I SHIFT I [::::J OD IT] (}i[] ISPACEI

CD OD IT] [Q] ISHIFT I [::::J IENTER I

FA. GCURSOR

The GCU RSOR statement specifies one of the 156 columns of dots, available on the display,
as the beginning column for any subsequent display of information. The format of the GCURSOR

instruction is:

GCU RSOR position-expression

where:

position-expression evaluates to a number in the range 0 to 155. This number specifies one of

the 156 7-dot columns of the display.

NOTE: If a position-expression results in a number which is less than 0 or greater than 155, an

ERROR 19 will occur.

The GCURSOR statement is usually used, in conjunction with the GPRINT statement, for the

purpose of creating graphic displays (this will be illustrated more thoroughly in the next section).
Other types of instructions may follow the GCURSOR statement since this statement does not

write any information. GCURSOR merely indicates in which column subsequent information will

be written. This is illustrated by the following lines:

Program Listing:

10 GCURSOR 50

20 PRINT "A"

30 GCURSOR 80

40 PRINT 26/3

88

Keystrokes:

OJ rn w w []] rn CD [Q] rn w rn IEHTER I

CD rn w rn [IJ [KJ CD I SHIFT I C':J m ISHIFT I C':J IEHTER I

rn rn w w []] rn CD [Q] rn rn rn 1ENTER I

m rn w rn [IJ [KJ CD CD W [2J rn 1EHTERI

which produces normal looking output at positions 50 and 80:

A
RUN

8.666666667-1

What happens if we alter line 30 to begin printing at GCURSOR position 93? Try this by
substituting the following line:

30 GCURSOR 93

Surprise! The second output has been "truncated" (chopped off) because it ran off the end of
the display.

As a final example of the GCU RSOR statement, we present an advanced program which creates
an unusual effect by overlapping characters:

Program Listing:

10 WAIT a
20 DIM A$ (0) *10

30 A$ (0) = "" : C = a
40 INPUT "ENTER MESSAGE « 10 CHARS)", A$ (0)

50 CLS

60 FOR 1= 1 TO (LEN A$ (0))

70 GCURSOR C

80 FOR J = 1 TO 3

90 GCURSOR C

100 PRINT MID$ (A$ (0), I, 1)

105 C = C + 3

110 NEXT J

120 C = C + 5

130 NEXT I

140 WAIT

150 GCURSOR 155

160 GPRINT "00"

170 END

89

Keystrokes:

m 00 ffiJ m CD OJ 00 IEHTERI

rn 00 [Q] CD 00 m I SHIFT I rn CD 00 IT] rnmooIEHTERI

rn 00 m I SHIFT I rn CD 00 IT] G ISHIFT I~ ISHIFT I~

I SHIFT I Ow GWIEHTERI

m 00 CD [J[J W [J[) OJ ISHIFT I~ m [J[J OJ m 00 !SPACEI

00 moo 00 m [Q] m ISPACEI CD ISHIFT! rn m W

ISPACEI W [BJ m 00 00 IT] ISHIFT I~ ISHIFT I [!J

m ISHIFT I rn CD 00 IT] IEHTERI

moow moo IEHTERI

rnoomwOOCDGmOJwCDmmoomlSHIFTlrn

CD 00 IT] IT] IEHTER I

CD rn [Q] w [J[) 00 00 w 00 W IEHTERI

[IJ 00 m w 00 Q] G m OJ w rn IEHTERI

rn 00 [Q] W [J[) 00 rn w 00 W IEHTERI

m rn 00 W 00 CD 00 OJ 00 CD [Q] ISHIFT Irn CD m

I SHIFT I rn CD rn IT] ISHIFT I [!J CD ISHIFT I [!J

mIT] IEHTERI

rn 00 rn W G W W rn IEHTERI

m moo [J[J IT] CXJ OJ Q] IEHTER I

mrnooWGWWWIEHTERI

m rn rn [J[J m CXJ IT] CD IEHTERI

m m rn ffiJ m CD IT] IEHTERI

m W rn [Q] W [J[) 00 00 wOO m W W IEHTERI

m rn 00 [Q] W 00 CD 00 OJ ISHIFT I~ 00 00 ISHIFT!~ IENTER!

m CD 00 m [J[J [Q] IEHTERI

90

F.5. GPRINT

The GPRINT statement provides direct, programmable control over the dots of the display
window. Since the GPRINT statement sets and resets dots within any 7-dot column, it is normally
used in conjunction with the GCURSOR instruction. The GCURSOR statement selects the
appropriate column for modification and the GPRINT statement manipulates the dots within
that column. The GPRINT statement is also capable of printing several contiguous columns of
information in a single statement.

In order to understand the format of the GPRINT statement, it is necessary to understand
how the dots within a column are controlled. The pattern of energized dots within a column
may be specified either as a decimal number or as a hexadecimal character string. If the decimal
system is used, then each row may be visualized as being numbered, from the top down, by a
power of two. This is illustrated below:

1 -------­
2 -------­

4 -------­
8 --------
16-------­
32 - - - - - - -­
64--------

With 7 dots to a column, each of which may either be on or off, there are 128 possible dot
patterns. Thus, to specify a particular pattern one uses the format:

GPR INT pattern-expression ; pattern-expression 2 .. (etc) ..

where:

pattern-expression evaluates to a number in the range 0 to 127 and specifies the pattern of
energized dots. Several pattern expressions may optionally be specified and must
be separated by either a semicolon or a comma. If a comma is used, a blank column
will be left between every printed column.

Let us illustrate the utility of the GPRINT instruction by creating a new character; an Up
Arrow. First, we design our character on a grid representing the rows and columns:

1 ----*----
2 --*-*-*-­
4 *---*---*
8 ----*----
16 ---- * ---­
32 - - - - * - - - -
64 ----*----

2 3 4 5

Caution
Observe the following when correcting the PRINT command in a program for a GPRINT
command:

Example: rRewite "PRINT" entirely into "GPRINT".

20 PRiNT A$

Lnserting only "G" does not allow the computer to judge it as "GPRINT'.
(This is regarded as "G" and "PRINT".)

The same can apply when the CURSOR command is corrected to a GCURSOR command, or
to the printer commands.

91

Because our character is 5 columns wide we will need 5 separate numbers in the pattern­
expression list of the GPR INT statement. The numbers representing the columns 1 and 5 must
each specify a single dot in the row labeled 4. Similarly, the numbers representing columns 2
and 4 must each specify a single dot in row 2. The final statement is:

GPRINT 4;2;127;2;4

The specification of the third column (127) is the only number whose derivation may not be
immediately obvious. The number 127 is the sum of a dot in the first row (1), a dot in the second
row (2), a dot in the third row (4), and so on. Thus, 127 is 1 + 2 + 4 + 8 + 16 + 32 + 63 and
specifies all 7 dots in the column. Any pattern may be created by specifying a row or a sum of
several rows.

If the hexadecimal addressing scheme is used, the 7 rows of the display are conceptually divided
into a lower group of 3 rows and an upper group of 4 rows. Each group is numbered, from its top
row, by powers of two as illustrated below:

1
2
4
8
1

2
4

Thus, it is possible to represent all the patterns of a group by a single hexadecimal digit.
Because the lower group has only 3 rows, the range of allowable digits for this group will be from
o to 7. Of the two hexadecimal digits required to specify an entire column, the first digit will
represent the lower group and the second digit will represent the upper group.

The form of the hexadecimal GPRINT is:

GP RINT "hexadecimal-string"

where:

hexadecimal-string is a string consisting of hex digits, each pair specifying the dot pattern of a
single column.

Using this format to create our Up Arrow character from the previous example would give us
the statement:

GPRINT "04027F0204"

92

Table of Hex Characters

1 -----
2 -----
4 -----
8 -----

0

1 -----
2 -----
4 -- * --
8 -----

4

1 -----
2 -----
4 -----
8 -- * --

8

1 ----­
2 -----
4 --*-­
8 --*--

C

5

9

--*--
--*--

D

--*--

2

6

A

--*--
--*--
--*--

E

3

7

--*--
--*--

B

--*--

F

Demonstration Program

This program prints all possible dot patterns, in order, from 0 to 127:

Program Listing:

10 WAIT 0 : CLS

20 FOR 1=0 TO 127

30 GCURSOR I

40 GPRINT 1

50 NEXT I

60 WAIT

70 GCURSOR 155 GPRINT "00"

80 END

Keystrokes:

rn 00 00 rn CO CIJ rn I SHIFT I CD W m w IENTER I

rn 00 m [Q] []] CO @] rn CIJ [Q] rn rn rn I ENTER I

rn 00 [ID w 0:0 []] W [QJ []] CO IENTER I

rn 00 [ID IT] []] CO 00 CIJ CO IENTER I

CD rn 00 w rn CIJ CO IENTER I

[]] rn 00 m CD CIJ I ENTER)

rn 00 [ID w 0:0 []] W [Q] []] rn CD CD I SHIFT I CD

[ID IT] []] CD 00 CIJ ISHIFTI~ rn rn I SHIFT I~ IENTER I

rn rn w 00 rn IENTER I
93

F.G. POINT

The POINT function returns a number which represents the pattern of activated dots within
the given column. Thus, the POINT function allows the "sensing" of any column on the display
under program control.

The format of the POINT function is:

POINT position-expression

where:

position-expression evaluates to a number in the range 0 to 155 and represents the column to
be investigated.

The value returned by the POINT function is a number in the range 0 to 127. The interpreta­
tion of this number is a sum of powers of 2 as explained in the section on GPR INT.

As an illustration assume that on the display is a capital I in columns 40 through 44:

1 --*-*-*-­
2 ----*----
4 ----*----
8 ----*---­

16 ----*---­
32 - - - - * - - - ­
64 --*-*-*--

44444
o 1 234

The expression:

POINT 40 would return 0,

POINT 41 would return 65,

POINT 42 would return 127.

94

Demonstration Program

The program listed here fills the display within the character stored in A$ and creates unusual
patterns by reversing this character. The program utilizes several of the statements discussed in
this chapter.

Program Listing:

10 A$= "X"

20 WAIT 0

30 Y=5: X=155/Y C=O

40 FOR 1=1 TO X

50 GCURSOR C

60 PRINT A$

70 C=C+Y

80 NEXT I

90 FOR I = 0 TO 155

100 GCURSOR I

110 A = 127 - POINT

120 GPRINT A

130 NEXT I

140 GOTO 90

Keystrokes:

CDoom ISHIFTI rn 8 ISHIFT I~ rn ISHIFT I~IENTERI

m w lliJ m rn CD W IENTER I

rn W m 8 rn 1SHIFTI 0 rn 8 CD rn rn CZJ m

I SHIFT I 0 W8 WIENTERI

IT] rn m [Q] 00 CO 8 CD CD [Q] rn IENTERI

rn 00 rn W DO 00 W [Q] 00 W JENTERI

m rn CD 00 rn 00 CD m ISHIFT Irn IENTER I

mooW8WrnmiENTERI

rn rn 00 w rn CD rn IENTER I

rn Q[] m [Q] 00 rn 8 rn CD [Q] CD rn rn tENTERl

CD rn rn [gJ W DO 00 W [Q] 00 rn (ENTERI

CDCDrnm8CDmmGCD[Q]rnOOCDrnIENTERI

CD m rn [gJ CD 00 rn 00 CD m IENTER I

CD rn rn 00 w m CDrn IENTER I

OJ IT] rn [gJ [Q] CD [Q] rn rn IENTERI

NOTE: If the last line is included, the program will be in an infinite loop when run. (This may be
stopped with the BREAK key). The character displayed may be changed by inserting a new
character in the assignment in line 10.

95

(.....::=--..:~=D=:==.:::.=...)

No matter how careful you are, eventually you will create a program which does not do quite
what you expect it to. In order to isolate the problem, SHARP's designers have provided a special
method of executing programs known as the "Trace" mode. In the Trace mode, the PC-1500 will
display the line-number of each program line and will halt after the execution of that line. This
allows you to follow (or trace) the sequence of instructions as they are actually performed. When
the program pauses after the execution of a line, you may inspect or alter the values of variables.

The form of the instruction for initiating the Trace mode is simply: TRON. The TRON
instruction may be issued as a command (in RUN mode) or it may be embedded, as a statement,
within a program. Used as a command, TRON informs SHARP that tracing is required during

the execution of all subsequent programs. The programs to be traced are then started in a normal
manner, with a GOTO or RUN command.

If TRON is used as a statement, it will initiate the Trace mode only when the line containing
it is executed. If, for some reason, that line is never reached, the Trace mode will remain inactive.

Once initiated, the Trace mode of operation remains in effect until canceled by a TROF F
instruction. The TROFF instruction may also be issued as either a command or a statement.
The Trace mode can also be canceled by the key sequence:

As an example of using the Trace mode, enter the following program to compute the length
of the hypotenuse of a triangle given the length of the sides:

Program Listing:

10 INPUT A, 8

20 A = A *A ; 8 = 8 *8

30 H=Y(A+B)

40 PRINT "HYPOTENUSE= ". H

In RUN mode, issue the TRON command, followed by the RUN command. Notice that the

INPUT command operates in the usual manner by displaying a question mark for each input
value required. As soon as you have entered two values, the line number of the INPUT statement
appears:

RUN

1 0

By pressing the rn (Up Arrow) key and holding it, you may review the entire line:

RUN

1 0 INPUT A, B

To continue the program, press the CD (Down Arrow) key once. This causes the next line to be
executed and its line number to be displayed. Again, you may review the line with the (Up
Arrow) key. You may also check the contents of any variable by typing its name and pressing
IENTERI :

96

(where A is a program variable)

RUN

It is necessary to press the OJ (Down Arrow) key once for each line to be executed until
the program ends. If you do not wish to continue normalline·by-line execution, press the ENTER
key to suspend execution of the program. If you change your mind again, suspended programs
may be continued with the CONT command.

A sample session, using our hypotenuse program, follows:

Keystrokes

rn [ill [f[)

OJ

OJ

OJ

CD

OJ

OJ

Display

>
TRON -
>
RUN -

?

3 -
?

4 -

1 0

1 0 I NPUT A. B_

20:

9

1 6

30:

5

HYPOTENUSE= 5

40:PRINT ~HYPOTENUSE= ~;H_

40:

>

97

H.1. Hexadecimal Numbers

The PC·1500 provides the capability to use a hexadecimal (base 16) number within any expres·
sion in which a decimal number may be used. Hexadecimal numbers are distinguished from
decimal numbers by preceding them with an & (ampersand). The following are examples of valid

hexadecimal numbers:

&16 &F &7ECA &08 &99A -&58

Hexadecimal numbers may be used in calculations:

10 + &A IENTERI

RUN

Or within programs:

Program:

35 GPRINT &F, 54, &3E

40 DATA 67,&7F,&28,12,305

H.2. AND Function

The AND function provides a boolean AND of the internal representation of two values. The

values must be in the range -32768 through 32767. Numbers which exceed this range will cause

an ERROR 19.

Example: Result:

10 AND &F 1 0

1 AND 0 0

-1 AND 1 1

55 AND 64 0

16 AND 63 1 6

98

H.3. OR Function

The OR function performs a boolean OR on the internal representations of two values. The
values must be in the range -32768 through 32767. Numbers which exceed this range will cause
an ERROR 19.

Example: Result:

10 OR &F 1 5

1 OR 0 1

-1 OR 1 -1

55 OR 64 1 1 9

16 OR 63 63

H.4. NOT Function

The NOT function returns the boolean NOT, or complement, of the internal representation of
a single value. The value must be in the range -32768 through 32767. If the value exceeds this
range an ERRO R 19 will occur.

Examples: Result:

NOT 9 -1

NOT &F -16

NOT 55 -56

NOT 1 -2

NOT -2 1

99

STOP, CONT

The STOP statement causes the computer to suspend the execution of a program. When the
program stops. the values of all variables are retained and the programmer may inspect and change
these. The program may then be continued. at the point where it was halted. with the CaNT
command.

When the STOP statement is encountered by the computer a message similar to the following
is displayed:

I BR EAK IN 60
RUN

where 60 is the number of the line which contains the STOP statement.

If you wish to review this line. depress and hold the CD (Up Arrow) key.

When the BREAK message appears you may also review and change the values of variables. For
example:

HQ IENTERI

56.23°1

A$ IENTERI

\\ D EDue T ION S II

Whenever you are ready to resume execution. simply return to the prompt (» and type CaNT
ENTER.

LOCK, UNLOCK

The LOCK instruction may be used to control the mode (RUN. PROgram. or RESERVE) in
which the computer operates. Included within a program it prevents the user from accidentally
changing the mode and injuring the program. The LOCK instruction disables the MODE key.
"locking" the computer into whatever mode it is currently in.

To re-enable the MODE key. the UNLOCK instruction is used. UNLOCK restores the normal
functioning. allowing changes in mode.

Either instruction may be used as a command or a statement. The forms are simply:

LOCK

UNLOCK

100

A. THE PRINTER/CASSETTE INTERFACE (CE-150)

The Printer/Cassette Interface is an option for the SHARP PC-1500 pocket computer. This
unit can be connected to one or two cassette tape recorders. The tape recorders can be used to
store programs and data on standard audio cassettes. Programs can be "loaded" back into the
PC·1500 for use at a later date, saving you the trouble of typing them again.

1. Connecting the Computer to the Interface
Connect the printer/cassette interface (CE·150) and the computer (PC-1500) in the following

manner.

(1) Turn the computer power OFF.
Important Note! It is essential that computer power be OFF. If power is ON, the computer
may "hang up" (all keys inoperative). If this occurs, press the ALL RESET switch on the
bottom of the computer while pressing the @ill key.

(2) Remove the protective pin cover from the left side of the computer and snap it into place on
the bottom of the printer (see figure).

Protective
pin cover

,/

101

to G)

o

Snap into place here

o

~p 1II

(3) Place the lower edge of the computer into the "cradle" so that the printer guides match-up
with the computer guide-slots.

(4) Lay the computer down flat.

(5) Gently slide the computer to the left so that the printer pins are inserted into the computer
(see figure).

\ / /1 ~I
,_~_~_?_a_Y_-J B

"A" mark

.... (c) Leftward

l
Align this surface
with mating surface
of the printer. Make
a close contact.

\
"A" mark

(b) Downward

j
/

!
\ ~~/ I

~I [I]
~ 0 I I

~7// I (
(a) Toward you

+
[JIll \l-~I ~ I SHARP.-. _. _. __ .0 __ "

\

Do not force the computer and Printer together. If match-up does not easily take place, carefully
shift the computer left and right to correctly position mating surfaces.

102

2. Power

The CE·150 unit utilizes a rechargeable Ni·CAD battery power source. Therefore it is necessary
to recharge the batteries after unpacking, and when the message below is displayed. (In this
case, the printer is locked. To unlock the printer, press the IQill and @ID keys of the computer
in that order after charging the battery)

(1) ERROR 8.9' or ERROR 78

Note: When the printer is in the pen replacement state, the display of ERROR 7B may appear.

(2) :CHECK 6 or NEW 0?: CHECK6

Power plug

~

~§
0)

AC adaptor
EA.yO

the AC adaptor,
Computer, when

the Computer IS connected to the
Printer/Cassette Interface.

3. Connecting a Tape Recorder to the Interface
First connect the CE·150 unit ar.d computer, and connect a tape recorder with the CE·150

unit as shown in the following diagram.

Tape Recorder

CE-150 terminals

@@ @ @ ~
REM I EAR MtC REMQ ADAPTOR

@ @ @ @ I[@!!I
[AR '-lIe REM

Grey plug
(transfer and
collation)

Red plug
(recording)

Black plug
(remote
control)
(This plug can
also be connected
with REM 1 terminal)

Grey plug
(transfer and
collation)

Black plug
(remote
controll

Red plug
(recording)

Cassette connection cable

103

The following is a description of the minimum tape recorder specifications necessary for inter­

facing with the CE-150:

Item Requirements

1. Recorder Type Any tape recorder, cassette, micro-cassette, or open reel

recorders may be used in accordance with the requirements

outlined below.

2. Input Jack The recorder should have a mini-jack input labeled "M IC".

Never use the"AUX" jack.

3. Input Impedance The input jack should be a low impedance input (200 ~

1,000 OHM.)

4. Minimum Input Level Below 3 mV or -50 dB.

5. Output jack Should be a minijack labeled "EXT. (EXTernal speaker)",

"MONITOR", "EAR (EARphone)" or quivalent.

6. Output impedance Should be below 10 OHM.

7. Output level Should be above lV (practical maximum output above
100 mW)

8. Distortion Should be within 15% within a range of 2 KHz through
4 KHz.

9. Wow and Flutter 0.3% maximum (W.R.M.Sl

10. Other Recorder motor should not fluctuate speed.

* In case the miniplug provided with the CE·150 is not compatible with the input/output jacks of

your tape recorder special line conversion plugs are available on the market.

NOTE:

• Some tape recorders may reject connection due to different specifications. Or those tape re­
corders having distortion, increased noise, and power deterioration after long years of use may not

show satisfactory results owing to change in their electrical characteristics .

• Precautionary Instructions for Tape Recorder Use

(1) For any transfer or collation, use the tape recorder that was used for recording. If the tape
recorder for transfer or collation is different from that used for recording, no transfer or
collation may be possible.

(2)The head of a tape recorder, if dirty, increases distortion or decreases the recording level.
Therefore, keep the head clean.

(3)Use a tape that is free of extremely low frequency response, scratches and creases.

104

4. Loading the paper
For details refer to the instruction manual for CE-150.

(1) To remove the printer cover, shift the printer cover lock lever in the direction of the arrow.

1'------_----=
~~~~b~;;J· (:J~

bJDClDO
00000
OOOOc:.
b:JOI::l~

~ ~ ~o 000za 00000
00000
OOODC
o DOC::=-

~
-~. iii

(2) Cut the tip of roll paper straight, and insert
the paper correctly into the paper inlet. (Any
curve or crease at the paper tip may prevent
paper insertion.)

(3) Press the computer @Rl key to turn it on,
and press the om key to feed paper. At this
time, feed the paper so that the paper tip is
3 to 5 cm above the printer.

Note:
Paper tape is available wherever the CE-150 is sold.
Please order product No. EA-1500P (5 rolls per package) when
reordering the paper tape. The paper tape is specifically
designed for this unique printer. Use of any other paper tape
may cause damage to the unit.

105



(4) Insert the shaft into the paper roll and place
the paper in the paper case.

(5) Place the printer cover back in position. At
this time, thread the paper roll tip out of the
printer through the paper cutter.

(6) Lock the printer cover.

5. Replacing the Pens
Four kinds of pens can be installed in this unit.

Pen installation positions are as illustrated below:
For details refer to the instruction manual.

Pen position
detecting magnet-

106

The pen slots are numbered 0, 1,2
and 3, clockwise from the position­
detecting magnet. These numbers
correspond to the positions selected
by the Color command.



For pen installation or replacement, follow the procedure below:

(1) With the computer [Q] key pressed, press the printer DID . This allows the printer to be in
its pen replacement state, when the pen holder shifts to the left and rotates. With the pen on
top changed, the pen holder moves to the right. (Release the key when the pen holder starts
moving.).

(2) To remove the pen, press the pen removal
lever. This causes the pen on top to come off.

(Note): When removing the pen, hold it lightly to
prevent it from popping up into the printer.

(3) Install a new pen.

Note:
Pen replacements are available wherever
the CE-150 is sold. Please order product
No. EA-850B (4 black pens per package) or
EA·850C (1 black, 1 blue, 1 green and 1
red pen per package) when reordering pens.
The pens are specifically designed for this
unique printer. Use of any other pen may
cause damage to the unit.

(4) To install or remove the next pen, press the [fill key. The pen holder returns to the left,
rotates so that the next pen comes up, and shifts to the right again. Remove the pen and

replace it with a new one as in steps (2) and (3).

(5) After pen replacement or installation, press the printer [fill with the computer @ pushed
down. This causes the printer to be released from its pen replacement state, and the pen

to return to the left.

(Note): To use this unit, install the four pens on the pen holder. Operation with a lack of even one pen
may cause color changes to malfunction.

Handling the pens:
The pens are installed on the printer when it is used, and removed from the printer after use. Cap

the pens and place them in their refill for storage.
Leaving the pens installed on the printer for a long time or otherwise exposed may cause the

ink to dry.

107



THE COMMANDS FOR THE PRINTER AND TAPE RECORDER TO BE DESCRIBED
HEREAFTER ARE ONLY AVAILABLE ON THE OPTIONAL PRINTER CE·150 (WITH A
BUILT·IN CASSETTE INTERFACE). SINCE THE COMPUTER IS NOT EQUIPPED WITH
THESE COMMANDS, PROGRAMMING WITH THEM IS POSSIBLE ONLY WHEN CON·
NECTED TO THE CE·150. THEREFORE, BE SURE TO CONNECT TO THE CE-150
FOR PROGRAMMING BY USING THESE COMMANDS.

1. Tape Recorder Operation

We recommend that you follow this procedure using a small, simple program. In the event of a
problem, it will be easier to re-perform the operation. Enter the program now.

You must prepare the tape recorder for program and data transfer. The following steps are
necessary to do this:

1. Turn the "remote" switch on the interface (CE-150) OF F.

2. Put a tape into the tape recorder (an important step).

3. Find a blank portion of tape. If the tape is brand new, advance it past the leader portion.
If your recorder has a number counter, jot down the number. This is extremely helpful in
relocating the program you are saving. O.K, next ...

4. If your recorder has an automatic volume control, set it on automatic. If it is a manual
volume control, turn the volume level up halfway between middle and maximum (i,e. 3/4
level). If your recorder has a tone control, turn the tone control knob to a position halfway
between intermediate and high (3/4 position),

5. Turn the "remote" switch on the interface back ON. If your recorder does not have a

" remote" feature, (this means that there is no place to connect one of the wires of the
wiring harness,) use the "pause" key to temporarily halt recording. If your recorder does
not have a "pause" switch, you are making things difficult. We strongly recommend that
you get a recorder that has one. This will make your new programming life much easier.
Better yet get one that has both, a remote feature, and a pause switch.

6. Depress both the RECOR D and the PLAY keys simultaneously. If you are using a machine
without a "pause" switch you will want to do this immediately before saving the program.

All ready? Ok, read on for the good stuff .

( ~ 'iiIi@ ~\Y;§ @ihiljirml-:J )

Allright, countdown checklist .. , ..

1. Tape recorder ready and waiting?

2. Tape in?

yes __ no

yes __ no

108



3. Computer on?

4. Program on the computer?

5. Wires all hooked up right?

6. Did you jot down the counter number?

7. Are you dressed?

yes __ no

yes __ no

yes __ no

yes __ no

irrelevant

If you answered "NO" to any of these questions reread the previous section to clear up the

problem.

Ok, one more thing and you are ready to go:

With the same command which saves your program you must give the program a "filename".
This is for reference purposes. Your filename can not be longer than 16 characters. To save
the program with a filename type:

CSAVE I SHIFTJ " PROG.-1 I SHIFTI "

Your program will be saved with the name "PROG.-l" You can assign any name you desire,
whatever is easiest for you to keep track of. Also, note that there is a 16 character length limit for

your filename. If the name is longer than 16 characters, the excess is ignored. A good practice is
to maintain a program log, which includes the program name, starting and stopping location on
tape (use the counter numbers). and a brief description of what the program does.

Press the IENTERI key. At this time you should hear a shrill buzzing sound, and the t~pe should
be turning. Also the "BUSY" indicator should light up. This tells you that the computer is
"busy" transferring your program from memory to the tape. If this does not happen, start again
from the beginning of the section. It took me only 10 tries to get it right, so don't be discouraged.
If I can do it, you can do it.

Once the computer arrives at the end of the program, the "BUSY" indicator light will go off,
the recorder will stop, and the "prompt" will re-appear on the display. Congratulations, your first
program has been saved for future use. In order to insure that this has in fact been accomplished
we can read it back into memory from the tape as explained in the next section.

(~ 'iJG:lB~ (OloJulllf!liG) )

Now that your first program is saved on tape, you will no doubt want to see if it is really there.
To do this is relatively simple; use the CLOAD? command, of course.

"What does it do?" you ask. Well, after CSAVEing your program simply type CLOAD? The
computer compares the CSAVEd program with the one in its memory. If all went well, it will
calmly display your filename and end its check. If all did not go well, an error message will be
displayed, usually ERROR 43. This tells you that the program on tape is somehow different
from the program in SHARP's memory. Erase that portion of tape and start again. Check all
your connections, and try turning the volume and tone up a little.

When using the CLOAD? command it is necessary that the tape be cued to the carrier tone which
preceeds the recorded data. The carrier tone consists of a steady, unmodulated signal of ap­
proximately 2.5KHz. If the tape is not properly cued, no error will be indicated and no data will
be presented on the display.

The following are instructions for loading a program back in:

109



1. Turn the remote switch on the interface OFF.

2. Rewind the tape to the place at which you started, again using the number counter. (See
how handy the number counter is!).

3. Stop rewinding.

4. Turn the remote switch back ON.

5. Press the PLAY button.

6. Type:

CLOAD ISHIFT I "PROG.-'ISHIFTI "
and press the IENTER I key.

(Remember "PROG.·'" is the filename we have given to your program. If you saved the
program under another name you must use that name instead of "PROG.-1)

7. The "BUSY" indicator will now light up, and the program will be brought back into the
computer's memory for use.

8. Type RUN, and the program you previously CSAVEd will re-appear. The cassette
retains a copy of the program, so you can CLOAD the same program over and over again!
While loading, when an error message ERROR 43 or ERROR 44 is displayed, start again
from the above step (1).

PRINT# :

Now, that we have illustrated the use of CSAVE and CLOAD, we would like to introduce two
similar commands. The PR INT # command saves the value of a variable or set of variables on tape.
This is different from CSAVE which saves a program. The purpose for saving data is to enable you
to use the same data in another program. For example, in the following program, the variable
T$ is in use:

10: PRINT "WHAT IS YOUR NAME?"

20: INPUT T$

30: PRINT T$

If you want to save the value of T$ for use in another program, you must issue the PRINT#
command to save it on tape. You can do this in two ways:

1. Manually

2. Through a program

Note: This operation requires the use of the tape recorder, so prepare the recorder to receive data.
If you are not sure how, go back to the previous section.

1. The Manual Method

The manual method offers several options:

OPTION 1:

After running a program, switch to the RUN mode and type:

IT] [K) CD 00 CO ISHIFT I00 A, B, C (then press IENTER I )

The tape recorder will now spring into action and will save the value of all variables on tape.

110



OPTION 2:

If you want to identify only certain variables to be saved type the following:

W CKJ CO [J[J CO ISHIFT] 00 "filename" ; A, S, C

In this instance you have just specified variables A, S, and C as the ones to be saved on tape

under the given filename.

OPTION 3:

You can also specify all values of related variables by typing:

W CKJ CO [J[J CO ISHIFT) 00 "filename" ; S (*)

The *symbol will save all varieties of "S", including S (1) and S itself.

2. Through a Program

To do this, simply assign a line number to the PRINT#command in your program. You
may use any of the formats described above. When SHARP encounters this line number it
will automatically activate the tape recorder and begin to transfer the data to tape. Once
again, PLEASE experiment. If things are not working, go back to the previous sections.
Something very simple may have been overlooked.

NOTE:
The file name represents the contents of a character string or a character variable quotated
with" . Therefore, if the first variable to be recorded or stored as specified without a file name
is a character variable, this character variable is regarded as a file name. In this case, be sure to
place a file name.

Example 1:

Example 2:

Example 3:

INPUT#:

10 A$ = "TAPE"

20 PRINT# AS; X$

This is idential to PRINT# "TAPE"; X$

PRINT# X

This records only the contents of numerical variable X without a file name.

PRINT# X$

This does not record only the contents of character string X$ without a file name,
but the contents of X$ is regarded as a file name. No semicolon (;) is placed
after the file name, causing a grammar error (E RRO R 1) to occur. Therefore, if
the first variable is a character variable, be sure to place a file name as: PRINT#
"AAA"; X$

This command allows the same formats as PRINT#. The difference is that INPUT#transfers
data from tape to the computer. (PRINT# transfers data from the computer to tape). You can
use the INPUT# command manually or as part of a program. Remember to prepare the tape
recorder before you begin to use this command.

~OTE: • If the number of recorded data is smaller than that of data memories to be loaded
with them, the error 43 occurs after all the data are transferred into the data memories
in the INPUT# statement.

• If the number of recorded data is larger than that of data memories to be loaded with
them, data are transferred until the data memories in the INPUT# statement are
loaded, and remaining variables are ignored.

111



@!llllll@l~

The MERGE command allows you to store many programs in the computer memory at the
same time. For example, let's assume the computer memory contains the following program:

10: PRINT "DEPRECIATION ALLOWANCE"

20: INPUT "Enter method: "; A

At this point you remember that you have a similar program portion on tape under the filename
"DEP1". You will, of course, want to see if this program has sections useful in the program you
are currently constructing. The first step is to find the tape with "DEP1" on it. Cue the tape to
the place at which "DEP1" starts.

Now type: MERGE "DEP1" and press IEHTERI

The computer will now load "DEP1" into memory IN ADDITION to the above program. After
"DEP1 "is loaded, you might find something in memory similar to this:

10: PRINT "DEPRECIATION ALLOWANCE"

20: INPUT "Enter method: "; A

10: "DEP1": REM» Second Module«

20: PRINT "INTEREST CHARGES"

30: INPUT "Amount Borrowed: "; B

(etc)

Note that unlike the CLOAD command, the new program DID NOT replace the existing one and
that some line numbers have been duplicated. Also note that a "label" was used on the first line
of the merged module. This allows "LINKING" of the modules together (See LINKING MERGED
MODULES - below).
It is important that you review the following information before proceeding with any further
editing or programing:

IMPORTANT NOTES:

Once a MERGE is performed, no INSERTIONS, DELETIONS, or CHANGES are allowed to
previously existing program lines.

Example:

10 "A" REM This is existing program

20 FOR T= 1 to 100

30 LPRINT T

40 NEXT T

(Etc)

BEFORE doing a MERGE of the next program, make any necessary changes to this program.
Then MERGE the next program: MERGE "PROG2" (example)

10 "B" REM This is MERGED program

20 INPUT "Enter depreciation: "; D

30 INPUT "Number of Years: "; Y

40 . Etc.

Now you may make changes to the above program since it was the last MERGED portion. If you
need to make further changes to the first program then follow this procedure:

112



1, CSAVE what you have done to this point; use a new name when saving to tape, Le., "PROG3"
(Example).

2. CLOAD the program saved in step one back into memory.
3. Now make any desired modifications or changes. However, keep this in mind: changes can

be made ON LY to the first program or to the FIRST OCCU RANCE of any duplicated line
numbers. I.E., if program line 10 appears in the first program as well as the second, changes
will only affect the first occurance of line 10. Thus if you attempt to edit the second
occurance of line 10, the change will be erroneously reflected in the first program portion
only.

ADDING ADDITIONAL PROGRAM LIMES:

Additional lines may be added at the end of the existing programs ONLY IF THEY HAVE

LINE NUMBERS GREATER THAN THOSE PREVIOUSLY USED.
Note that additional program lines may not necessarily appear at the "bottom" of the listing.
Since modules must be linked via labels (see below), this should not be of concern,

LINKING MERGED MODULES (programs) TOGETHER

Since the processor executes your program lines in logical sequence, it will stop when it encounters
a break in the sequence in line numbering, i,e., if line numbers 10,20,30 are followed by duplicate
line numbers in a second module, the processor will cease execution after line 30 in the first module.
To "LINK" your various modules together, the following techniques are valid: GOTO "B"
GOSUB "B", IF... THEN "B" (B is used for example only, you can use any label except
reserved words or letters wh ich appear in row # 2 on the keyboard, i.e., Q thru Pl.

NOTE:

When another program is subroutine-called with GOSUB statement in a plurality of merged
programs, program a GOTO statement (a line number greater than the line number to be executed)

after the GOSUB statement.

Example: 10 "A" : INPUT A

20 GOSUB "B" : GOTO 30

30 GOTO 10

10 "B" PRINT A

20 RETURN

CHAIN is a program instruction; it can only be used within a program. It ca'nnot be used
manually like CSAVE, CLOAD, and MERGE. The CHAIN statement allows you to run a program
that is too large to fit into memory all at once. Such large programs must be divided up into
sections with a CHAIN statement at the end of each section. These sections can be saved on tape
with CSAVE.

For example, let's assume you have three program sections named PROG1, PROG2, PROG3.
Each of these sections ends with a CHAIN statement.

"PROG1" "PROG2" "PROG3"

10: ;--+ 1010: r-' 2010:
20:

r- 2000: CHAIN
1000: CHAIN

1000: CHAIN "PROG2", 1010 2000: CHAIN "PROG3", 2010 4000: END

During execution, when the computer encounters the CHAIN statement, the next section is
called into memory and executed. In this manner, all of the sections are eventually run.

113



7. Using Two Tape Recorders

Tape Recorder 0

CE·150 terminals

@@@ @ ~
v.;. IiIIVO Ao:J,;':-

t t t t

Auxiliary cable
(remote control)

Black plug
(remote control)

Grey plug
(transfer and
collation)

Black plug
(remote control)

Red plug
(recording)

Black plug
(remote control)

Tape Recorder 1
Cassette connection cable

Black plug
(remote control)

When using two tape recorders, one of them is used for recording and the other for playback.
As illustrated, the Printer/Cassette Interface and the two tape recorders are connected by using
the connection cords and the auxiliary cord for remote control.

• The CE·150 is equipped with two remote control terminals REM 0 and REM 1, either of
which can be used. In program operation (not manually), however, the program designates
the tape recorder connected to the REM 0 terminal or the REM 1 terminal. Therefore, these
remote control terminals should be connected according to the program.

In this section, how to operate the second tape recorder connected to the REM 1 terminal of the
interface is explained

1. Saving
Procedures:

(1) Type RMT OFF and press IEHTERI to reset the second remote control function. (Control
of Tape recorder 1 in the illustration above)

(2) Put a tape into the tape recorder.
(3) Type RMT ON and press IEHTERI to set the second remote control function.

(4) Set the volume and tone controls in the same manner as that explained previously in the
single tape recorder.

(5) Depress both the RECORD and the PLAY buttons simultaneously.

114



(6) Execute RECORD instruction.
Program: CSAVE·1 "file name" IENTERI

Data: PRINT # ·1, "file name" ; variable, variable, •...
(Example) Designate PRO or RUN mode.

CSAVE-1" PR·l" (ENTERI

After the saving the "prompt" will re·appear on the display and tape stops. Rewind
the tape for collation.

2. Collating the Computer and Tape Contents
Procedures:

(1) Type RMT OFF IENTERI to clear remote control functions.
(2) Rewind the tape to the place at which you started, again using the number counter.
(3) Enter RMT ON and the IENTER I key to set remote control functions.
(4) Set the volume and tone controls in the same manner as that explained previously in the

single tape recorder.
(5) Press Playback button.
(6) Execute COLLATION instruction.

CLOAD?-1" file name" IENTERI

(Example) Designate PRO or RUN mode. CLOAD?-l "PR-1" IENTERI

Execution ends when both contents match, resulting in prompt displays.

3. Transfer from Tape
Procedures:

(1) Enter RMT OFF and the IENTERI key to clear remote control functions.
(2) Put a recorded tape into the tape recorder.
(3) Type RMT ON and press the IENTERI to set remote control functions.
(4) Set the volume and tone controls in the same manner as that explained previously in the

single tape recorder.
(5) Press the Playback button.
(6) Execute TRANSFER instruction.

Program: CLOAD·1 "file name" IENTER I
Data: INPUT # -1, "file name" ; variable, varialbe, IENTERI

(Example) Designate PRO or RUN mode.
CLOAD-l "PR-1" IENTERI

After the transfer, prompt displays result.

115



(
NOTE: All explanations and examples in this section assume that you have already:

1) Properly connected the PC·1500 Computer to the CE-150 Interface.

2) Provided power to the CE-150 with a SHARP EA·150 electrical adaptor.

3) Loaded the pens into the printer.

4) Loaded the paper into the printer.

If you have not done these things, please return to Section A of this Chapter for
instructions.

Characters/line:

Character Size:

Printing Speed:

Rotation:

Colors:

Graphing System:

Paper Feed:

4,5,6,7,9,12,18, or 36 depending on character size chosen.

1.2 x 0.8 mm to 10.8 x 7.2 mm depending on character size chosen.

Maximum: 11 Characters per second when printing smallest characters.

Characters may be printed in either of two directions on either of two axes.

4 - Red, Blue, Green, Black.

X-Y axis plotting.

Manual or Programmable.

The first thing you will want to do is to test the functioning of the CE·150 printer. With the
Computer and Interface ON, type:

TEST (and press IENTERI)

The printer will now draw 4 boxes, each a different color. The color of the boxes, from left
to right, is what you chose as Colors 0 through 3 when you inserted the pens.

116



.~

Using the CE-150 Interface it is possible to make a printed copy of a series of manual calcula­
tions performed on the PC-1500 Computer as in Figure 1:

Figure 1: 12131313*.1365
7813

7813+25.56
8135.56

SIN 313
13.5

TX=.a65
13.1365

p=2aa0a*TX
131313

P/12
108.3333333

To do this, simply set the Print Switch on the Interface to the "P" position:

To prevent the automatic printing of manual calculations, the Print Switch must be placed in
the"." position. With the switch in this position, you may still print out selected results by
prefacing the computation with an LPR INT command (see LPR INT). Other commands which
cause printing or drawing, such as LLlST, LINE, and others, are also functional in this mode.

When printing, the color used will be the color which was previously specified. If you have just
turned the machine on, this will be whatever color pen you have selected to correspond to Color O.
To change the color, you must issue the Color command (see appropriate section).

The character size used to print manual calculations is dependent on the previous specification.
If the previous character size specified was size 1 or size 2, then this size remains in effect. If the
previous size, was larger than 2, then size 2 is used.

Automatic printing causes the printer mode to be set to TEXT. If you were in GRAPH mode
and wish to return to this mode, you must issue the GRAPH command. (Printer modes are
explained in the next section).

117



As the printer is operating it may be in one of two modes; TEXT or GRAPH. These modes
correspond roughly to human typing versus human drawing. Since most commands work only
in one mode or the other, it is important to select the proper mode before issuing instructions.

The TEXT mode is used for printing numbers and characters. The width of the printer's paper
is divided into columns, the number of which is related to the specified character size. Vertical
and horizontal tabbing commands are provided to format text information.

In the GRAPH mode, a variety of diverse figures, charts, and tables may be created. Commands
to draw both solid and dashed lines, using either a direct or relative coordinate system are
available. All drawings utilize a normal X-V coordinate scheme.

To specify TEXT mode, the statement:

TEXT

is sufficient. Certain commands (discussed later) cause an automatic switch to the TEXT mode.

Specifying the GRAPH mode is equally simple. The statement:

GRAPH

will initiate this mode, setting the pen to the far left side of the paper.

(---.;~--~-....:::.'-~--==''::..-.'---)

The LUST command causes the current program, or portions ot the program to be printed.
Because selective printing of program sections is possible, the LUST command is extremely
helpful during the program development process.

The form of the LUST command is similar to the form of the UST command. Because LUST
is more versatile, there are subtle differences, The LUST forms are as follows:

LLiST

Prints all program lines currently in the program memory.

LLiST expression

- Prints only the program line whose line number is given by expression.

LLiST ,expression

Prints all program lines up to, and including, the line whose number is given by the
expression.

LLiST expression,

- Prints program lines beginning with the line whose number is given by expression.

LLiST expression 1, expression2

Prints program lines beginning with the line whose number is given by expression 1 and
ending with the line whose number is given by expression 2. Thus, if the command is:

LLiST 100,150

then all lines between 100 and 150 (if any) will be listed.

LLiST "label"

- Prints the program line containing the given label.

118



LUST "label",

Prints program lines beginning with the line containing the given label and continuing
to the end.

NOTE: Specification of a label which does not exist will be signaled by an ERROR 11
message.

When printing a program, the color used will be the color which was previously specified. If
you have just turned the machine on, this will be whatever color pen you have selected to
correspond to Color 0. To change the color, you must issue the Color command (see appropriate
section).

The character size used to list a program is dependent on the previous specification. If the
previous character size specified was size 1 or size 2, then this size remains in effect. If the
previous size was larger than 2, then size 2 is used.

The LLIST command causes the printer mode to be set to TEXT. If you were in GRAPH
mode and wish to return to this mode, you must issue the GRAPH command.

While listing a program the PC·1500 computer attempts to justify the program lines for
readability. This is done by leaving spaces in the line numbers. Line numbers which are 1 to 3
digits wide will be right justified within a 3 character field. Line numbers which are 4 or 5 digits
wide will be printed in a 5 character field:

10: REM WIDTH 3

20: REM

300: REM

2001: REM WI DTH 5

2010: REM

119



(@ill,~~~ )
,-.-----------'-"--..=.....::.......:...:..:.=~------'

C.6.1. CSIZE

The CSIZE command specifies the size of the characters for all subsequent printing. There are
nine sizes available, ranging from 36 characters per printed line to 4 characters per printed line.
The form of the CSIZE command is:

CS IZE expression

(either mode)

The expression must evaluate to a number in the range 1 through 9. The width and height of the
characters for each size is given in the following table:

Table 1:

CSIZE 1 2 3 4 5 6 7 8 9

Characters per printed
36 18 12 9 7 6 5 4 4

line.

Height of each 1.2 2.4 3.6 4.8 6.0 7.2 8.4 9.6 10.8
character (mm)

Width of each character
0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2

(mm)

C.6.2. ROTATE

The ROTATE command is used, in GRAPH mode only, to specify the direction in which
printing occurs. Four directions are possible; Up, Down, Left to Right, and Right to Left (with

the letter upside down). The directions are illustrated in Figure 1. The form of the ROTATE
command is:

ROTATE expression

(GRAPH mode only)

The expression must evaluate to a number in the range 0 to 3. ROTATE 0 designates the
normal manner of printing characters from Left to Right.

Figure 1:
3

t
ell
<l:

2 +- 8V AS ---+ 0
l>
!:Xl

i
1

120



C.6.3. COLOR

The COLOR command allows the specification of the pen to be used for all subsequent printing
and drawing. If each pen position contains a different color pen, then the COLOR command may
be used to change pen colors. The form of the COLOR command is:

COLOR expression

(either mode)

The expression must evaluate to an integer in the range 0 to 3. Each integer corresponds to a
different pen. The color represented by the integer will vary depending on the order in which the
pens were loaded in the carrier. The correspondence may be determined by the TEST command

(described above).
Numbers which are not integers but which are in the range 0 through 3 will be truncated to

integers. All other numbers will cause an ERROR 19.
When the PC-1500 Computer is turned OFF and then ON, again the pen which corresponds

to zero is selected.
In the TEXT mode, execution of the COLOR command will cause the pen position to be reset

to the left side of the paper. In the GRAPH mode, the pen will return to its previous position.

C.6.4. LF (Line Feed)

The LF command causes the paper in the printer to be moved forward or backwards. The form
of the command is:

LF expression

(TEXT mode only)

If the expression evaluates to a positive number (up to 32767) the paper is advanced the number
of lines specified by the expression. An expression which evaluates to a negative number will
cause the paper to be pulled back the number of lines specified by the expression. This is illustrated
by Figure 2:

Figure 2: (minus direction)

-2 -------------

-1 -------------

o -------------

+1 -------------

+2 -------------

(plus direction)

<= pen position

The actual distance the paper is moved is related to the character size in effect when the LF
instruction is specified.

When the paper is traveling in the reverse direction (i.e. it is being pulled back) an internal
counter prevents it from moving backwards more than 10.24 centimeters (about 4 inches).

NOTE: Do not attempt to insert paper while the paper feed mechanism is operating. This can

damage the printer.

121



C.G.5. LPRINT

The LPRINT command is the main command for displaying text information on the printer. It
is similar in nature to the PRINT command of the PC-1500, and they share several of the same
forms. However, because of the additional features available on the printer, the actions of the
LPRINT instruction are more complex. We will therefore concentrate on the subtleties involved

in using the LP RINT statement.
The following discussion of the LPRINT command assumes TEXT mode only. Although

the given forms may work in GRAPH mode, their operation will be different.
The printing of a single item remains generally the same:

LPRINT item

where item is an expression, character string, number, or name of a variable whose contents will
be printed. As usual, characters are left justified and numbers are right justified.

Like the cursor on the display, if the pen is not positioned at the left of the paper, printing will
begin from the pen's position. The position of the pen may be changed by the LCURSOR
statement or by the TAB clause (see below).

A problem occurs when one tries to print an item which is too big to fit on one print line
because of the current character size. If the item is a number an ERROR 76 will result. If the
item is a character string, the string will be continued on the next line.

Concern for the size of a printed item is also important for the two-item LPRINT statement,
whose form is:

LPRINT item 1, item2

Using CSIZE 1 guarantees that two numeric items will be printed on the same line. In this
case, the items will be justified in the usual manner within the two halves of the printed line. For

LPR INTs involving strings the picture is not so clear. If the items both fit, they are justified as
usual and printed on the same line. If they do not fit, the results are usually split across two lines.
For larger character sizes the two items are printed on two successive lines.

The semicolon may also be used in the LPRINT statement. It serves both to indicate minimum
spacing of items and, at the end of a statement, to group successively printed items on the same
line. In either case, if the total length of the items exceeds the capacity of the print line, the items
are printed on successive lines (as many as necessary). The LPRINT with the semicolon has the
form:

LPRINT·item1 item2 ... (etc)

or the form:

LPR INT item-list;

Several of the aforementioned forms are used in the following demonstration program:

10 A$ = "ABCDEFG"

20 B = 123456

30 FOR I = 1 TO 3

40 CSIZE I

50 LPRINT A$

60 LPRINT A$, B

70 LPR INT A$; B

80 LF 5

90 NEXT I

122



Which produces the output:

Q8CDl"FG
lIllCDEFG
lIllCDEFG 123.~

ABCOEFG
ABCOEFG

123.~

123456
ABCOEFG 123456

ABCDEFG
ABCDEFG

123456
ABCDEFG 1234
56

The LPRINT command may be used without an item specification, in either TEXT or
GRAPH mode:

LPRINT

Used in this manner, it will cause a Carriage Return and a single Line Feed. It does not,

however, reset the counters of the GRAPH mode. Thus, in the following example, although the
LPR INT statement has been used to move the pen from Point A to Point B, the printer believes
itself to be at coordinates (150,30) and will execute all subsequent commands as if it were.

J(0,0)•
B

•
A

(150,30)

The LPRINT statement also incorporates a USING clause which operates in the same manner
as it does in the PRINT statement. The USING clause may only occur in an LPRINT statement
which is executed in the GRAPH mode.

C.G.G. LCURSOR

The LCURSOR statement allows positioning of the pen in a manner analogous to the CURSOR
statement of the display. The form of the LCURSOR statement is:

LCURSOR position

(TEXT mode only)

The character position to which the pen may be moved is, of course, dependent on the
character size in effect. In general, the pen may be positioned at one space less than the maximum
for the character size. For a list of the print line widths at each character size, refer to the CSIZE
command in this section.

123



C.G.7. TAB

The TAB statement is identical to the LCURSOR statement, except that it may be used within
an LPRINT statement. This type of LPRINT statement has the form:

LPRINT TAB position; item-list

The same comments which apply to the position expression of LCURSOR apply to TAB. If

the item-list is empty the net result of the instruction listed above will be a Line Feed.

C.G.8. SORGN (Set ORiGiN)

The SORGN command is used to establish the origin of the X-V coordinate system for sub­
sequent graphing commands. The SORGN statement makes the current pen position the origin.

Thus, this instruction is usually used directly after an instruction which moves the pen to a given

spot on the paper. The form of the SORGN command is simply:

SORGN

(GRAPH mode only)

NOTE. The CE·150 printer allows a pen position to be specified which is outside the range of
drawable positions. In this case the pen moves as far as it can and then "cuts off". If the pen is
moved into this imaginary realm and then the SORGN command is issued, subsequent printing
or drawing statements will have no effect. It would thus appear as if the program was in error
or that the Interface was damaged.

The following program sets the origin to 100 units up and 100 units to the right of the pen's
current position. It then draws a 10 unit box with one of the boxes' corners at the new origin:

10 GRAPH

20 LINE (0,0) - (100, 100), 9

30 SORGN

40 LINE (0,0) - (10,10), 0, 0, B

50 TEXT

60 END

C.G.9. GLCURSOR

The GLCURSOR statement moves the pen to any X-V coordinate without drawing a line.
The form of the GLCURSOR statement is:

GLCURSOR (expression 1, expression 2)

Both expressions must evaluate to a number in the range -2047 to +2047. Expression 1
represents the X distance to the destination point and expression 2 represents the Y distance
to the destination point.

NOTE If the destination point is outside the range of points to which the pen may actually

move, the pen will stop at one side of the paper. Internally, the counters which control the pen
are still counting toward the goal.

Examples of the use of the G LCU RSOR statement follow:

124



x

(100, 150)'

In the example at the right, the pen is moved
to position (100,150).

In this example, the pen is incorrectly posi­
tioned in the "imaginary" region at position
(1000, 1000).
The pen actually moves toward the right
margin and scrolls the paper back. As it
reaches the right side it continues upward
until it reaches the built-in backing limit of
10 cm., at wh ich time it stops.

150

0,0

1000

-

t

Pen position

100

_....---
~

Actual
pen position

Pens internal
position

y

0o-::-----t--(Ii'')'----+1~o ( 1000

~---C.6.10. LINE
The LINE command is the primary command of the GRAPH mode. It specifies the movement

of the pen from one point to another. If the pen is down as it moves, a line is drawn. The LINE
comrnand also allows dashed lines to be drawn with eight different dash lengths. The first from
of the LINE command is:

LINE (Xl, Yll- (X2, Y2l, line-type, color

The starting point of the line is determined by the values of the expressions X1 and Yl. If
the values of the expressions Xl and Y1 are omitted, the current pen position is used for the
starting point (Xl, Yl). The destination point of the line is determined by the values of the
expression X2 and Y2. Both the X and the Y values must be in the range -2048 to +2047. A
value specification which exceeds this range will produce an error.

The line-type, and color parameters are optional. If they are omitted, the values used are
the values which were in effect before the command. Color is, of course, one of the colors in the
range 0 to 3. The line-type must be an expression which evaluates to a number in the range 0
through 9. Table 2 identifies the meaning of each option:

125



Table 2:

Line·type
Value

o
1
2
3
4
5
6
7
8
9

Resulting
Line Size

Solid Line
0.4 mm dash
0.6 mm dash
0.8 mm dash
1.0 mm dash
1.2 mm dash
1.4 mm dash
1.6 mm dash
1.8 mm dash
Pen·Up (no line)

°1 .

2 -------------------.---------­

3 -----------------------

4 ------------------

5 --------------­
6 ------------­

7 -----------­

8 ----------

9

Used in another manner the LI NE command interprets the point specifications as the endpoints
of a diagonal. It will then proceed to draw the box represented by the diagonal. The form for
this LINE statement is:

LINE (X1, X2) - (Y1, Y2), line-type, color, 8

The upper case 8 indicates that this is a box drawing command. The other parameters are the
same as for the previous form of the command.

The final form of the LINE command allows multiple point specifications to be made. Each
point, after the first, represents a destination endpoint of the next line segment to be drawn.
The current position is assumed as the starting endpoint for the line segment. This form of the

LINE command is:

LINE (X1, Y1) - (X2, Y2) _ ... (X6, Y6), line-type, color

The three dots in the form above are used to indicate that a series of point specifications (up to
six in a row) may be given. Note that the 8 parameter may NOT be used in this form of the
command. An example program to draw a triangle using four line segments is given below. Line
15 serves merely to establish the origin, while the triangle is drawn by line 20:

10:GRAPH
15: LINE (0, O)- <10

0,0),9:S0RGN
20:LINE (0, O)-(50

,50)-(-50,50)­
(-50,-50)-(O,O
), 0, °

30:TEXT

126



e.G.11. RUNE

The RLINE command is the same as the LINE command except that all of the point specifica­
tions represent a position relative to the current pen position, rather than to the origin. The forms
of the RLI NE commands are the same as those of the LI NE commands with the substitution of
the word RLINE for LINE.

Examples follow: LINE (100,100) - (200, 501. 2, 1

y

100
(100,100)

............ Color 1
......

......
......

'0

(200,50)

...-=:O-+::- --+- t--_~ X
o 100 200

LINE - (50, 100) - (lOa, -100) - (-50, -100)

Y

(100, -100)

Starting pen position

t

(-50, -100) f
Pen goes
off edge and
is lifted.

____-.;;.50:.....-_-t-.:.:(0'"'1'r-0 '-)-----'r-------f----?X

127



RLINE - (50,50) - (50, -100) - (-50, -50)

it -100
Starting L
pen position

50

LINE (50,50) - (100, 100). 2,,8

y

(100,100)
10 r -0<--"

I I
I ).
'f I
I I

50 .. __ -)--_--1
(50,50)

-50

--t-°~o:-----:l::----t----+----~X
50 100

128



RLINE - (100,501" , B

~50
~

Starting
pen position

A. Defining and Selecting Reserve Keys

An important, labor-saving feature of the SHARP PC-1500 is the six keys whose function may
be redefined. These Reserve keys allow the computer user to specify frequently typed phrases

or keywords which are then recalled with a touch of a button. The Reserve keys are the six keys,
in the top row of the keyboard, which are labeled !, ", #, $, o/p and &. Each of these keys
may be assigned up to three phrases or keywords for a total of 18 stored phrases.

The assignment of phrases to keys is performed in the third of SHARP's modes; the RESERVE
mode. To enter the RESERVE mode press:

The mode indicator at the top of the display should now read RESERVE. To escape from the
RESERVE mode, simply press the MODE key once.

Because each Reserve key may be used to recall any of three stored phrases, there must be a
method of selecting which phrase is recalled when a Reserve key is pressed. This method is a key
in the lower left corner marked with the symbol ( ~). Called the Reserve Select key, this button
selects which stored plirases currently correspond to the Reserve keys. It is important to note
that the Reserve Select key changes the correspondence for all of the Reserve keys at once. That
is to say that the Reserve Select key selects a group of phrases, each of which corresponds to a
single Reserve key. Which group is currently selected is indicated by the small Roman numerals
(1, II, and III) at the top of the display.

129



To assign a phrase to a Reserve key, enter the RESERVE mode (press ISHIFT I~) and use
the Reserve Select key to select the group (I, II, or III) in which the phrase will be stored. Then
press the appropriate Reserve key (!, ", #, $, %, or &). Depending on which Reserve key you
pressed, the display will appear something like the following:

RESERVE

F6

(The number following the F, six in our example, represents which key was pressed.) When this
prompt appears you may key in the phrase to be stored. As an example type the following:

This phrase is now associated with the Reserve key you selected.

Let's test this. Return to the RUN mode by pressing the MODE key. Press the Reserve key
you used in our example. The display will now show the command just stored:

I RUN
RUN

If you press the ENTER key the computer will attempt to run a program at line 100. The
advantage of the Reserve key is that you don't have to type an entire command each time you
desire to issue it.

A special notation allowed in the Reserve mode could have saved us some trouble in the
previous example. This notation is the use of the @ (At sign) to represent the ENTER command.
If we had assigned the phrase "R UN 1OO@" to our Reserve key, execution of the program would
have begun as soon as we returned to the RUN mode and pressed the Reserve key. To demon­
strate this, enter the following statements as line 222:

222 BEEP 5,50 : END

Now enter the RESERVE mode and define one of the Reserve keys using these keystrokes:

(Notice that the IENTER I keystroke is still required to define the Reserve key itself).

Return to the RUN mode and press the Reserve key just defined. You will observe that the
ENTER keystroke after the Reserve keystroke is now superfluous.

Actually our noisy example could have been accomplished by assigning the phrase:

BEEP 5,50@

directly to a Reserve key. Try it.

B. Identifying Reserve Keys
As you increase your use of the Reserve keys, you will want to remember which key has

been assigned which function. The PC-1500 allows you to store three strings of characters (one
for each group of Reserve keys) which identify the functions of the keys. These strings are

130



analogous to comments in the PROgram mode.

Identifying strings (called "templates") are created in the RESERVE mode. Switch to this
mode and select the appropriate group of Reserve keys using the Reserve Select key. Then instead
of pressing a Reserve key, as you normally would, type a template and press ENTE R. The
template is then stored in association with the group.

As an example, pretend that we have assigned Reserve keys one through six (in group I) the
names of the Trigonometric Functions (Sine, Cosine, Tangent, ArcCosine, ArcSine, and
ArcTangent). In order to remember which key corresponds to which function we will specify
a template. To do this switch to the RESERVE mode (press I SHIFTI~ ), and use the Reserve
Select key to select group I (a Roman numeral I will appear on the display). Now type:

"SIN COS TAN ACS ASN ATN "

Keystrokes:

I SHIFTI c:J wIT] Q[) ISPACEI w [Q] rn ISPACEI

CO m Q[) ISPACEI m w w !SPACEI m rn Q[)

ISPACEI m CO Q[) ISPACEI

The template has now been defined and stored.

Return to the RUN mode by pressing the ~ key. To recall the meaning of the Reserve keys,
simply press the ~ (recall) button and there they are! Press the ~ key once more and
the prompt returns.

Templates may be created for each group of reserve keys. and may be up to 26 characters in
length. Note that the template is strictly a reminder to you; the words or letters you store in a
template have no meaning to the computer.

C. Deleting reserve programs

1. As you know, Q[) m 00 IENTERI keys clear all reserve memories.
Please note that the above key operation must be done in the RESERVE mode.

2. To delete a reserve memory, use the ISPACEI or I SHIFT! @E) keys as described below:
Example: Clear A *A which is reserved in the key number F3 (6) at the group I.

Option

OJ
~

[EJ or ~

I SPACEII SPACEII SPACEI

or I SHIFT I@E) I SHIFT I@E) I SHIFT I @E)

IENTER \

Display

F3: A * A

F3: .'/!i. * A
F3:

(F3:

F3:

131

Remarks

displays the symbol I.



A. The DEF key

The DEF key (short for define) provides several time-saving shortcuts ...

)

The DEF key is the third method of beginning a program. As we have seen in the section on
the RUN command, a program may be "labeled" with a letter. The DEF key may be used to
quickly initiate a labeled program. This is done by pressing the DEF key followed by the

alphabetic key which corresponds to the label of the program. The following keys may be used

in this manner:

A, S, D, F, G, H, J, K, L, Z, X, C, V,

B, N, M, SPACE and =

As an example, enter the following statements to create three labeled programs:

Program Listing:

10 "Z" : GOSUB 500

20 PRINT "Z KEY"

30 END

140 "A" : GOSUB 500

150 PRINT "A KEY"

160 END

270 .. .. : GOSUB 500

280 PRINT "SPACE KEY"

290 END

500 CLS : PAUSE "YOU PRESSED THE ".

510 RETURN

In RUN mode, try beginning each program with the DEFine key. Notice that specifying a
letter for which no corresponding labeled program exists will produce an ER ROR 11.

A.2. Pre·assigned Keywords -.

A few of the most frequently used keywords have been permanently assigned to a single
alphabetic key in the second row of the keyboard. These keywords may be retrieved, in any
mode, by pressing the DEFine key followed by one of the alphabetic keys. For example, to
retrieve the keyword USING type:

132



The keywords available and their corresponding alphabetic keys are:

Template

Alphabetic key

Q

W
E

R

T

Y

U

I

o
P

Keyword

INPUT

PRINT

USING

GOTO

GOSUB

RETURN

CSAVE

CLOAD

MERGE

LIST

Can be used, when the printer/
cassette interface is connected
with the computer.

INPUT PRINT USING GOTO GOSUO RETURN CSAVE ClOAO MEAGE LIST

DDDDDDDDDD
DDDDDDDDD
DDDDDDDDD

Two templates are supplied with your computer. Use them to
identify the functional operation assigned to the definition keys.

A.3. The AREAD statement

Labeled programs, which are initiated using the DEF key, may be given a single value each time
the program is run without using an INPUT statement. The reading of the value is performed
by the AREAD statement, which must follow the program label on the same line. The AREAD
statement has the form:

AREAD variable-name

where variable-name is a legal numeric or character variable name.

To pass a value to a program which incorporates an AREAD statement, the user types the
value, presses the DEF key, and then presses the alphabetic key corresponding to the program
label.

As an example, enter the following two programs:

Program Listing:

10 "X" : AREAD TM

20 TIME = TM

30 PRINT "TIME SET TO "; TM

40 END

100 "Z" : AREAD D$

110 PR INT "TODAY IS "; D$

120 END

133



Return to the RUN mode and begin the program labeled X by typing the month, day, time,
and DEF X:

OJrnQ]OJ[Q]rnGJrn[Q][Q][Q]~oo

This program will set the system clock to whatever time you specify before the DEF keystroke
(see TIME function).

To begin the program labeled Z type a day of the week and DEF Z:

B. Automatic Program Initiation

Not only may programs be started quickly and easily using the DEF key, but they may be
started totally automatically when you turn the PC·1500 on.

To cause this to happen, you use the ARUN statement. This statement must be the very first
statement in the program memory or it will be ignored. In addition, several other conditions are
necessary for the ARUN statement to work. These are that the PC·1500 was turned OF F while
in the RUN mode, and that no errors are detected as the PC·1500 is turned ON.

The following program uses the ARUN statement to greet the computer operator:

Program Listing:

10 ARUN

30 CLS

50 BEEP 5,50

70 PRINT "WELL, HI THERE!"

90 END

)

Although the various methods of beginning a program superficially achieve the same result,
their internal operation differs. In order to exploit these differences to your advantage it is
necessary to discuss the storage of data within the computer. Also included is a section comparing
the various internal preparations which are made by the PC-1500 before running a program.

134



C.1. Fixed Memory Area

Although all variables of the same type are utilized in the same manner, they are not treated

the same internally. The PC·1500 includes a "fixed memory" area with enough storage space

for 26 numeric variables and 26 character string variables (string size of 16 characters). Con·

sequently the variables A through Z, and the variables A$ through Z$ are permanently allocated
within this area.

All other variables, including those with two character names, are allocated within the main

memory area of the computer. This main memory area is also shared by the instructions of the
program, although the variables are allocated beginning at the opposite end of memory from the

instructions. Because the program instructions and data share the same area it is possible for them

to use up all available storage. In this case an ERROR in the range 177 through 181 will occur.

It is important to realize that the two memory areas are not treated the same upon program
initiation. This is explained in the chart in the next section. Basically, variables in the fixed
memory area are never cleared except by an explicit CLEAR statement. Those in main memory
are cleared whenever a program is begun with the RUN command.

One other idiosyncrasy about the fixed memory area is that the data in this area may be
redefined as an array whose name is @ (At Sign), for numeric variables, and @$ for string variables.
Thus, the designation @ (1) is the same storage location as the variable A and @ (26) is the same
storage location as the variable Z. The designation @$ (5) refers to the same location as E$, and
the designation @$ (20) refers to the same location as T$. For obvious reasons subscripts above 26
are not allowed. Notice that the arrays @ and @$ need not be dimensioned before use.

C.2. COMPARISON CHART OF PROGRAM

INITIATION METHODS

RUN GOTO DEF--
Display is cleared. y y N

Cursor returns to first column. y N N

WAIT interval is set to infinite. N N N

Trace mode is altered. N N N

Fixed Memory Area is cleared. N N N

Main Memory Area is cleared. y N N

FOR·NEXT, GOSUB y y y
internal stack is cleared.

ON ERROR GOTO is y N N
cancelled.

DATA pointer for READ y N Noperation is RESTOREd.

USING format is cancelled. y N N

135



136



137



Printer Commands

COLOR COL. LPRINT LP.
COLO. LPR.

LPRI.
CSIZE CSI. LPRIN.

CSIZ.
RLiNE RL.

GLCURSOR GL. RLI.
GLC. RLiN.
GLCU.
GLCUR. ROTATE RO.
GLCURS. ROT.
GLCURSO. ROTA.

ROTAT.
GRAPH GRAP.

SORGN SO.
LCURSOR LCU. SOR.

LCUR. SORGo
LCURS.
LCURSO. TAB

LF
TEST TE.

LINE LIN. TES.

LLiST LL. TEXT TEX.
LLI.
LLiS.

Cassette Commands

CHAIN CHA. MERGE MER.

CHAI. MERG.

CLOAD CLO. PRINT # P. #

CLOA. PR.#
PRI. #

CLOAD? CLO.? PRIN. #

CLOA.?
RMT OFF RM. OF.

CSAVE CS. RMT ON RM. O.

CSA.
CSAV.

INPUT # 1.#
IN. #
INP. #
INPU.#

138



Statements

AREAD A.
AR.
ARE.
AREA

ARUN ARU. GOSUB GOS.
GOSU.

BEEP B. GOTO G.

BE. GO.

BEE. GOT.

CLEAR CL. GPRINT GP.

CLE. GPR.

CLEA. GPRI.
GPRIN.

CLS GRAD GR.
GRA.

CURSOR CU.
CUR
CURS. IF
CURSO.

DATA DA.
OAT. INPUT I.

IN.
INP.
INPU.

DEGREE DE.
DEG. LET LE.
DEGR.
DEGRE. LOCK LOC.

DIM D. NEXT N.
01. NE.

NEX.
END E.

EN. ON O.

ERROR ER.
ERR.
ERRO.

FOR F.
FO.

GCURSOR GCU.
GCUR.
GCURS.
GCURSO. 139



PAUSE PA.
PAU.

PAUS. STEP STE.

PRINT P.

PRo
PRI
PRIN.

STOP S
ST.

STO.
RADIAN RAD.

RADI. THEN T.
RADIA. TH.

THE.

RANDOM RA. TRON TR.
RAN. TRO.
RAND.

RANDO.

READ REA. TROFF TROF.

UNLOCK UN.

UNL.

UNLO.
REM UNLOC.

USING U.
RESTORE RES. US.

REST. USI.
RESTO. USIN.
RESTOR.

WAIT W.
RETURN RE.

WA.
RET.

WAI.
RETU.
RETUR.

Commands

CONT

LIST

C
CO.

CON.

L.
L1.
LIS.

140

NEW

RUN R.
RU.



Functions

ABS AB. MEM M.
ME.

ACS AC. MID$ MI.
MID.

AND AN. NOT NO.

ASC OR

ASN AS.

ATN AT. PI

CHR$ CH. POINT POI.
CHR. paiN.

COS RIGHT$ RI.
RIG.
RIGH.
RIGHT.

DEG RND RN.

DMS DM. SGN SG.

EXP EX. SIN SI.

INKEY$ INK. SQR SQ.
INKE.
INKEY.

INT STATUS STA.
STAT.
STATU.

LEFT$ LEF. STR$ STR.
LEFT.

LEN TAN TA.

LOG La. TIME TI.
TIM.

LN VAL V.
VA.

141



When replacing the batteries, these cautionary instructions will eliminate many problems:

• Always replace all four (4) batteries at the same time.

• Do not mix new batteries with used batteries.

• Use only: Dry battery (type AA, R6 or SUM-3, 1.5V) x 4

Before the computer can be used, or whenever the battery indicator disappears, replacement of
the batteries is necessary. Please follow this replacement procedure:

1. Turn off the computer by pressing the IQEl key.

2. Remove the screw from the battery cover with a coin or a small screw driver (see Fig. 1).

3. Replace the 4 batteries. (Fig. 2)

Battery
cover

[~
7'/ G

ISI =:::J

I
[B

I

Fig. 1

4. Push the battery cover in slightly while replacing the screw.

5. To proceed press the [Qffi and [gJ keys, (Be sure you are in program mode. If not, press

~ until PRO is displayed.), type NEW lJ and press IENTERI key.
Next, press ISHIFT I~ , type NEW and press IENTERI. This procedure will clear the PC-1500

memory and reserve memory areas.

6. Check the following display.

I>
L The prompt symbol is displayed.

If the display is blank or displays any other symbol than" >", remove the batteries and

install them again, and check the display.

142



Note: * If the computer will not be operated for an extended period of time, remove the

batteries to avoid possible damage caused by battery leakage.

* Keeping a dead battery may result in damage to the computer due to solvent
leakage of the battery. Remove a dead battery promptly.

* The rechargeable battery can not be used as a battery for PC-1500.

* The AC adaptor, EA-150 for CE-150 is also used as an AC adaptor for the PC-1500,

when it is separated from the CE-150.

(Do not connect EA-150 to the computer, PC-1500, when the PC-1500 is connected
to the printer/cassette interface, CE-150.)

Module compartment
This is where an optional memory
module is accommodated.

Do not touch any connector
inside the compartment. This
may adversely affect the com­
puter due to static electricity.

143



Upper Bit Positions -+
b7,b6,b5 000 001 010 011 100 101 110 111

Low Bit
Positions
b4,b3,b2,bl

.j. 0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Hexa
0 1 2 3 4 5 6 7

decimal

0 SPACE 0 @ P p

1 ! 1 A Q a q

2 .. 2 B R b r

3 # 3 C S c s

4 $ 4 D T d t

5 % 5 E U e u

6 & 6 F V f v

...,
7 7 G W 9 w

'-'

8 ( 8 H X h x

9 ) 9 I Y i y

A * : J Z j z

B + ; K v' k {

C < L ¥ I
I, I

D - = M rr m }

E > N /\ n -
F / ? 0 - 0 •

144



Error Code

1. Syntax error:

Explanation

This error results from typing errors such as:

missing information:

10: GOTO

or invalid commands.

10: NEW

(because NEW may not be a statement.)

< Display> ERROR IN 1 0

2. This error occurs when there is no FOR command corresponding to a NEXT com­
mand, or when there is no GOSUB command corresponding to a RETU RN command.

Ex. 10: FOR A = 1 TO 10

100: NEXT B

< Display> ERROR 2 IN 100

4. This error occurs when there is no DATA corresponding to a READ command.

Ex. 10: READ X, Y

20: DATA 10

30: END

< Display> ERROR 4 IN 10

5. This error occurs when an array variable is declared with the name of an existing
variable.

Ex. 10: DIM A (10, 10)

20: DIM A (5)

< Display> ERROR 5 IN 20

6. This error occurs when an array variable has been used without a DIM (dimension)
statement.

Ex. 10: CLEAR

20: A (3) = 1

< Display> ERROR 6 IN 20

145



Error Code Explanation

7. This error occurs when the variable name is inappropriate.

Ex. 10: A$ = 10 or

10: FOR A$ = 1 TO 10

< Display> ERROR 7 IN 10

8. This error occurs when the dimension exceeds 3 in the declaration of array variable.

Ex. 10: DIM A (3,4,5,6)

< Display> ERROR 8 IN 10

9. This error occurs when the subscript number of an array variable exceeds the size of

the array stated in the DIM command.

Ex. 10: DIM A (3)

20: A (4) = 1

< Display> ERR 0 R 9 I N 2 0

10. This error occurs when there is not enough memory available to create more vari­

ables.

Ex. key operation

MEM IENTERI

AS = 10 IENTERI

display

7
ERROR 10

11 . This error occurs when the specified line is not in the program.

Ex. 10: PRINT "X="; X: GOTO 5

< Display> ERROR 11 IN 1 0

12. This error occurs when the USING command specifies incorrect format specifica­

tions.

Ex. 100: PRNT USING" # # # A # "; 10

< Display> ERROR 12 IN 100

13. This error occurs when a program exceeds program-memory capacity or when the
Reserve key specification exceeds the Reserve-area capacity.

Ex. key operation

MEM IENTER I

15 A =A + 1 IENTER I

146

display

7

ERROR 13



Error Code Explanation

14. (1) FOR statements have been nested too deeply and the stack capacity has been
exceeded.

(2) While parsing an expression, buffer space has been exceeded.

15. (1) GOSUB statements are nested too deeply and the stack area has been exceeded.
(2) While parsing an expression, the string buffer size has been exceeded by the

character strings handled.

16. (1) The value specified is over 1E100 or less than - 1E100.

Ex. 123E 99

(2) The value set by hexadecimals exceeds 65535.

Ex. &1 FFAB

17. Data type (numerals, character strings) is inappropriate for calculation expression.

Ex. 1 + "A" IENTERI

18. Number of arguments inappropriate for expression.

Ex. LEFT$ ("ABC") IENTERI

SIN (30,60) IENTERI

19. Specified numeric value is outside the permitted range.

Ex. 10: DIM A (256)

< Display> ERROR 19 IN 10

20. When fixed memory array variables are specified, there is no ' (' following'@' or
'@$'.

Ex. 100: @$="A"

< Display> ERROR 20 IN 100

21. A variable is required in the expression.

Ex. 10:FOR1=OT010

< Display> ERROR 21 IN 1 0

22. This error occurs when the program is loaded, and there is no memory space available
for loading.

23. This error occurs the time is set incorrectly.

Ex. TIME = 131005.10 IENTERI

147



Error Code Explanation

26. This error occurs when the command cannot be executed in the current mode.

Ex. < RUN MODE> NEW IENTER!

27. This error occurs when an optional printer is not connected and there is no program
which corresponds to the given label.

Ex. key operation display

ERROR 27

28. This error occurs when a command or function code has been inserted inside" "
or when you try to substitute INPUT commands or AREAD commands for character
variables.

Ex. 10 INPUT A$

key operation display

ERROR 28

30. This error occurs when a line number exceeds 65539.
(65280-65539: ERROR 1)

Ex. 102235 A = 10 IENTERI

32. This error occurs when the graphic cursor is between columns 152 - 155 during
execution of input commands (input code cannot be displayed)

Ex. 100: GCURSOR 152

110: INPUT X

< Display> ERR 0 R 3 2 I N 1 10

131

177 '"
181

0, 224 '"
241

There is a "+", or "-", which is regarded as sign, immediately before character
string and/or character variable.

During program creation the program has overwritten the data area. Overlapping
of these two areas occurred.

During execution of INPUT commands or AR EAD commands incorrect input
data is given.

Ex. 10: INPUT A

key operation

123 PRINT !ENTER! ERROR 240
The data are not separated by commas, or the data does not end by colon (:) or

IENTER! operation.

148



Error Code Explanation

36. Data or characters cannot be displayed in accordance with the format specified by
USING commands.

Ex. 10: USING "####. ##

20: PRINT 12345

The integer section together with its sign has exceeded 4 digits spaces.

37. This error occurs in numeric calculations, when the calculation results have exceeded
9.999999999 E99.

38. This error occurs when division has occurred using 0 as the denominator.

Ex. 10: PRINT 5/0

Ex. LN (-10)

Ex. ASN (1.5)
ACS (100)

Ex. SQR (-10)* Square Root of negative numbers

39. This error occurs whE!n an illogical calculation has been made:

* negative number logarithmic calculation

* ASN, ACS in the case of X = 1

Cassette Related Errors

40. Inappropriate specification for the expression.

41. SAVE and LOAD have been specified for the ROM area.

42. The Cassette file data is too large and cannot be LOADed.

43. While verifying data using the CLOAD? command the format of data to be loaded
does not match the file format.

44. A CHECK SUM Error has occurred.

Printer Related Commands

70. (1) The pen has exceeded the coordinate range of:

-2048 < = X, y <= 2047
(2) The pen will exceed the range upon execution of further commands.

71 . (1) The paper has backed up more than 10.24 cm in the TEXT mode.
(2) The paper will back up more than 10.24 em. upon execution of further com·

mands (in TEXT MODE).

72. The value given is inappropriate for the value of TAB.

149



Error Code Explanation

73.

74.

A command has been used in the wrong printer mode (GRAPH/TEXT).

The numbp.r of commas (,) in LINE or R LINE command is too large.

Note: Entry of over seven commas results in an error. Also, if the first comma is
omitted, more then six would cause an error.

76. For LPR INT, when the printing of calculation results cannot be done on one line
(in TEXT mode).

78. (1) Pen (s) are in the process of being changed.
(2) The LOW BATTERY state has not been corrected. (see Note 1)

This error occurs when, for either of these two reasons, commands that move the
pen (such as LPRINT and LINE) are not able to be executed.

79.

80.

The color signal hasn't gone on. (see NOTE 2)

Low Battery. (see NOTE 3)

NOTES:

(1) If ERROR 78 is due to LOW BATTERY state of the printer, turn OFF the
CE-150. After recharging the printer, turn the CE-150 ON. You may now

continue.

(2) The color signal is for COLOR and goes on only when the pen comes to the
left side. When the pen is in this position, it is possible to know the number of

the present pen color position.

(3) After recharging, immediately push the PC-1500 ON key again and start opera­

tion.

G PRINT AS

_1
[E] G PRINT A$

1
~ GPRINT $

(4) When error 1 appears, note the following:

Input
• To correct misinput:

10 APRINT A$ IENTERI

10 GPRINT A$ IENTERI

LA is changed to G.

• To change CURSOR command to GCURSOR

command:
10 CURSOR 10 IENTERI

10 GCURSOR 10 IENTERI

LG is inserted.

• When [§]~00 is operated for GPRINT input:
When corrected or input in the above method, the command cannot be judged by the
computer. In this case, the spelling of the command should be reinput from the beginning

by using the alphabet keys.
The cursor makes it possible to check that the command is properly input.

(Correct input) (Incorrect input)

rcursor

G PRINT A$

1
[E] GPRINT 'A $

150



BASIC Programming

Problem Solving and Structured Programming in BASIC by Elliot Koffman and Frank
Friedman. (Addison-Wesley Publishing Co., Reading, Massachusetts). 1979.

basic BASIC by Donald M. Monro. (Winthrop Publishers, Inc. Cambridge, Massachusetts),

1978.

BASIC with Business Applications by Richard W. lotto (John Wiley & Sons, New York, New

York). 1977.

Practical BASIC Programs edited by lon Poole. (OSBORNE/McGraw-HilI, Berkeley, Cali­
fornia.). 1980.

General Reference

Introduction to Computers and Data Processing by Gary B. Shelley and Thomas J. Cashman.
(Anaheim Publishing Co., Fullerton, California). 1980.

Calculations are performed in accordance with the following hierarchy; expressions in
parentheses having the highest priority and logical operations having the lowest. If two or more

operations of the same priority are found in the same expression or sub-expression, they are

evaluated from left to right.

1) Expressions in Parentheses

2) Retrieval of values from variables, TIME, PI, MEM, IN KEY$

3) Functions (SIN, COS, lOG, EXP, etc.)

4) Exponentiation (Example: 2A A 3 =2 *(A 1\ 3))

5) Arithmetic Sign (+, -)

6) Multiplication, Division (*, /l

7) Addition, Subtraction (+, -)

8) Comparison Operators «. <=. =. >=. >. <»

9) Logical Operators (AND. OR, NOT)

151



NOTES:

When both arithmetic sign and exponents are used in the same expression, the exponent is
evaluated before the sign.

Example: _51\4 is evaluated to -625 instead of 625

Calculations within parentheses will be evaluated first. In expressions with several "layers"
of parentheses, calculations start with the innermost pair and proceed to the outermost pair of
parentheses.

Sample Evaluation

7 1\ 2 + 3 * V144 / V81 + SIN ( 120 + 150) * -3

7 1\ 2 + 3 * V144 / V81 + SIN (270) * -3

7 1\ 2 + 3 * 12 / 9 + -1 * -3

49 + 3 * 12 / 9 + -1 * -3

49 + 36 / 9 + 3

49 + 4 + 3

53 + 3

56

(CALCULATION RANGE)

Functions Dynamic range

y.A X (yX)
-1 x 10'00 < x logy < 100r: O,x ~ 0' ERROR 39

Y - O,x > 0 .0 I
y<O,x ~ integer: ERROR 39

DEG: Ix I <1 X 1010 In TAN x, however, the following cases are
SINx excluded.

COSx RAD: IXI<I~oxl010 DEG: Ix I = 90(2n-l)

TANx GRAD: Ix 1< I; x 1010 RAD: Ix I = ; (2n-l)
GRAD: Ix I = 100(2n-1) (n: integer)

SIN-Ix
-1 ~ x ~ 1

COS-IX

TAW1x Ix 1<1 X 10100

LNx 1 x 10-99 ~ x< 1 x 10100
LOGx

EXPx -1 x 10100 < X ~ 230.2585092

..jX o~ x < 1 X 10100

nctions other than shown above can be calculated only when x stays within the following range.

1 x 10-99~ Ix 1<1 X 10100 and 0

x.) fJAfJ IENTER J ~ ERROR 39
fJ"'5 IENTERI --)0 fJ

(-4) AfJ.5 IENTERI ~ ERROR 39
-4 A fJ.5 IENTERI ~ -2

Fu

(E

• As a rule, the error of functional calculations is less than ±1 at the lowest digit of a displayed nume­
rical value (at the lowest digit of mantissa in the case of scientific notation system) within the
above calculation range.

152



X.1 PC-1211 Instructions Available on the PC-1500

1. Functions

ABS

ACS

ASN

ATN

COS

DEG

DMS

EXP

INT

LOG

LN

11 (PI)

SGN

SIN

Y (Square Root)

TAN

(exponentiation)

2. Statements

AREAD

USING

CLEAR

DEGREE

END

FOR·TO·STEP

GOSUB

GOTO

GRAD

IF

INPUT

LET
MEM

3. Commands

CONT

LIST

NEW

RUN

4. Cassette Commands

CHAIN

CLOAD

CLOAD?

CSAVE

INPUT ~

PRINT #

NEXT

PAUSE

PRINT

RADIAN

REM

RETURN

STOP

THEN

USING

153



1. Functions

AND

ASC

CHR$

INKEY$

LEFT$

LEN

MID$

NOT

OR

POINT

RIGHT$

RND

STATUS

STR$

TIME

VAL

2. Statements

ARUN

BEEP (not PC·1211)

CLS

CURSOR

GCURSOR

GPRINT

DATA

DIM

LOCK

ON ERROR

ON GOSUB

ON GOTO

POINT

RANDOM

READ

RESTORE

TRON

TROFF

UNLOCK

WAIT

3. Commands

(same as PC-1211)

4. Cassette Instructions

CHAIN

CLOAD

CLOAD?

CSAVE

INPUT#

MERGE

PRINT#

RMT OFF

RMT ON

5. Printer Instructions

COLOR

CSIZE

GCURSOR

GLCURSOR

GPRINT

GRAPH

LCURSOR

LF

LINE

LUST

LPRINT

RLiNE

ROTATE

SORGN

TAB

TEST

TEXT

154



1. Functions

Function Abbrevi ati ons Remarks

ABS AB. Absolute value

ACS AC. cos- 1

AND AN. expo AND expo [logical And]

ASC ASC Converts characters to ASCII code

ASC "character"
character variable

ASN AS. sin- 1

ATN AT. tan- 1

CHR$ CH. Converts ASCII code to characters
CHR. CH R$ ASCII decimal code numeric value

COS COS

DEG Converts degrees, minutes, seconds to decimal degrees

DMS DM. Converts decimal degrees to degrees, minutes, seconds

EXP EX. eX

INKEY$ INK. Character variable = IN KEY$
INKE. If a key is pushed during execution of IN KEY$
INKEY. command, the ASCII character will be read into the

character variable.

INT Truncates value to integer

INT (10/3) IENTER I< Display> 3

LEFT$ LEF. LEFT$ (character variable, numeric expression)
LEFT. Takes the specified number of characters from the left

side of the specified character string.

LEN LE N "character"
character variable

Seeks the character count of the specified character
string

LOG La. 10glO X

LN logo X

MEM M. Displays the remaining number of steps available in
ME. memory. Same as STATUS O.

155



Function Abbreviations Remarks

MID$ MI. MI0$ (character variable, numeric exp 1, numeric
MID. exp2);

Takes character (s) from the middle of the specified
character string.

NOT NO. NOTexp. [logical Negation]

OR expo OR expo [logical Or]

1T (PI) Specifies ratio of circumference
( =3.141592654)

POINT POI. Returns a number which represents the pattern of
POIN. activated dots within the given column. POINT

numeric expression

RIGHT$ RI. RIGHT$ (character variable, numeric exp)
RIG. Takes the specified number of characters from the
RIGH. right side of the specified character string.
RIGHT.

RND RN. RND expression

Command to generate random numbers

SGN SG. Signum function

SIN SI. sine

ViSOR) SO. square root

STATUS STA. STATUS 0 or 1
STAT. (0) Number of program steps available.
STATU.

(' ) Number of program steps already used.

STR$ STR. STR$ numeric expression

Converts numerals to character string.

TAN TA. tan

TIME TI. (' ) TIME = month, day, hour. minute, second
TIM. Time function sets month, day. hour, minute, second

(2) TIME [calls up date and time]

VAL (value) V.
{ "character" }

VA. VAL character variable

Converts character strings to numerals

/\ Powers

156



2. Statements

Command Abbreviation Remarks

AREAD A. AREAD variable
(auto read) AR. When executing programs by defined keys, AREAD

ARE. enters display content into specified variables.
AREA.

ARUN ARU. ARUN
(auto run) Command to automatically start program execution

when the PC1500 is switched on.

BEEP B. BEEP exp1, exp2, exp3
BE. Sound command. Turns sound generating functions
BEE. ON/OFF, specifies loudness and length of sounds.

CLEAR CL. Command to clear all data (variables)
CLE.
CLEA.

CLS (clears) Display clear command. Erases display.

CURSOR CU. (1 ) CURSOR expo (0 < =expo <= 25)
CUR. specification of starting position of display.
CURS. (2) CURSOR
CURSO. cancels previous specification.

DATA DA. DATA exp, exp, ...
DAT. Data to be read in using the READ command,

DEGREE DE. Angular mode specification.
DEG. Degree [0J is designated.
DEGR.
DEGRE.

DIM D. (1 ) DIM variable name (exp)
(dimension) DI. (2) DIM variable name (exp) *exp3

(3) DIM variable name (exp1, exp2)

variable names: A, B, C$, D$, etc ....

( ): specifies size and dimension of the array

exp3: digit space specification

END E. Program ending command
EN.

FOR F. (1 ) For numerical variable =exp1 to exp2
FO. Start of FOR·NEXT loop. Used in correspondence

with NEXT command.

TO (2) FOR numerical variable =exp 1 TO exp 2
STEP exp3

STEP STE. exp1: initial expression
exp2: final value
exp3: interval to increase with each loop

157



Command Abbreviation Remarks

GCURSOR GC. Specifies display position by dot units.GCU.
(graphic GCUR.
cursor) GCURS. GCURSOR expression (0 < = expression < = 155)

GCURSO. or (&0 <= expression < = & 9B)

GOSUB GOS. j expression }
GOSU. GOSUB "character"

character variable
Subroutine jump commands.
Moves execution to specified line or label.
Statements at this point are executed as a subroutine.
Used in correspondence with RETU RN command.

GOTO G. Jump commands.
GO. { expression }
GOT. GOTO "character"

character variable

Moves execution to specified line or label.

Displays on printer content given on display.

GPRINT GP. (1) GPRINT "00 00 00 ... "
(graphic GPR. (inside" " are hexadecimal numbers)
print) GPRI.

GPRIN. (2) GPRINT 0; 0; ...

(3) GPRINT & 0; & 0; ...

GRAD GR. angular mode designation.
GRA. grad ([ 9 1) is designated.

IF (1 ) IF conditional expression execution command.

(2) IF arithmetic expression execution command.

Evaluates given conditions and either moves execution
to the next line or executes command.

INPUT I. (1) INPUT variable, variable, ...
IN. (2) INPUT "character", variable, "character",
INP. variable
INPU.

(3) INPUT "character"; variable, "character";
variable

LET LE. (1 ) LET numeric variable =expression

(2) LET character variable ="characters"

(3) LET character variable =character variable.

LET follows IF commands. It can be omitted in other
cases.

LOCK LOC. Locks the MODE the computer is in.

NEXT N. NEXT numeric variable
NE. Shows the very end of the FOR-NEXT loop.
NEX.

The numeric variable must be the same as the numeric
variable following the FOR command.

158



Command Abbreviation Remarks

ON O. ON ERROR GOTO expression

ERROR ER. Error trapping command.
ERR.
ERRO.

ON O. ON expression GOSUB exp 1, exp2, exp3

GOSUB Gas. Subroutine jump command. Specifies the place to
GOSU. jump to (exp 1, exp2, exp3) by the value of

expression.

ON O. On expression GOTO exp 1, exp2, exp3

GOTO G. Jump command. Specifies the place to jump to
GO. (exp 1, exp2, exp3) by the value of the expression
GOT. following ON.

OPN OP. OPN
OPN "Device name"
Th is command can be used when the PC-1500 is connected
with the CE-158 (Interface).
For details, refer to the Instruction Manual of the CE-158.

PAUSE PA. Same form as PR INT command. Displays the specified
PAU. content for about 0.85 seconds, then executes
PAUS. program.

POINT POI. POINT expression (0 < = expression < = 155)
paiN. (& 0 < = expression < = & 9 B)

Reads out dot pattern of information displayed at
specified point.
ex. A = POINT 56

PRINT P. { expression }
PRo (1 ) PRINT "character" ;
PRI. character variable
PRIN. joxp",,;oo 11 oxp",,;oo I

(2) PRINT "character" ,"character"
character variable character

variable!oxp",,;oo Ijoxp",,;oo
(3) PRINT "character" ; "character"j

character variable character
variable!expression }

; ... ; "character" ;
character variable

RADIAN RAD. Angular mode designation.
RADI. Radian ([radl ) is designated.
RADIA.

RANDOM RA. Place the seed of random numbers prior to the use of
RAN. RND commands.
RAND.
RANDO.

159



Command Abbreviation Remarks

READ REA. READ variable, variable, ...
Data read in command. Enters data from DATA
statements into specified variables.

REM REM ... document notes .•.
(remark)

Specify remarks not to be executed.

RESTORE RES. (1 ) RESTORE expression
REST. Changes the order of data read in by READ
RESTO. commands
RESTOR. (2) RESTORE

start at beginning of first DATA statement

RETURN RE. Return to continue execution after GOSUB
RET. statement that invoked this subroutine.
RETU.
RETUR.

STOP S. Command to halt program execution.
ST.
STO.

THEN T. Defines execution command for IF statement.
TH. Jump commands are only possible to be defined as
THE. execution commands for IF command.

{ expression }
THEN "character"

character variable

TRON TR. Specifies the mode to perform debugging.
(trace on) TRO.

TROFF TROF. Cancels the mode for performing debugging.
(trace off)

UNLOCK UN. Cancels LOCK mode.
UNL.
UNLO.
UNLOC.

USING U. (1 ) USING "###.###/\"
US. (2) USING" &&& ..... &&&"
USI. (3) PRINT USING "Format"; ....
USIN. (4) USING

(5) PRINT USING;

Specifies display position by the value of the
expression.

WAIT W. WAIT expression (0 <=expression < =65535)
WA. Specifies time duration of display when using PRINT
WAI. commands.

WAIT with no argument cancels the previous specifica-
tion (duration =infinity)

160



3. Commands

Command Abbreviation Remarks

CONT C. Restarts execution of programs that have been
(continue) CO. temporarily halted. Effective in the RUN mode.

CON.

LIST L. Command that performs program listing. Effective in
LI. the PRO mode.
LIS.

NEW (1 ) NEW (2) NEW 0 (Effective only for PRO mode)

In the PRO mode, clears the program and all variables.

(3) NEW expression (where, expression =1= 0)

In the PRO mode, the area between the first address and
the address of "expression-1" is secured for machine
language area, and the remaining area for the program and
all variables is cleared.

RUN R. (1 ) RUN
RU. (2) RUN expression

(3) RUN "character"
character variable

Effective in RUN mode.

4. Cassette Commands

Command Abbreviation Remarks

CHAIN CHA. Transmission commands. When used in the middle of
CHAI. a program, reads in programs from the tape (transmits)

and executes the program.

(1 ) CHAIN "filename"
(CHAIN-1 "filename")

(2) CHAIN "filename", expression
(CHAI N-1 "filename", expression)

(3) abbreviated forms of the "filename" for (1) and
(2).

CLOAD CLO. Transmission command. This command transmits
(cassette CLOA. program or reserve content from the tape to the
load) computer memory.

(1 ) CLOAD
(CLOAD-1)

(2) CLOAD "filename"
(CLOAD-1 "filename")

161



Command Abbreviation Remarks

CLOAD? CLO.? Comparison command. This command compares the
(cassette CLOA.? program in the memory or the reserve content with the
load?) content recorded on tape.

(1 ) CLOAD?
(CLOAD?·1)

(2) CLOAD? "filename"
(CLOAD?·1 "filename")

CSAVE CS. This command records on tape the content of program
(cassette CSA. and reserve memory.
save) CSAV. (1 ) CSAVE

(CSAVE-1 )

(2) CSAVE "filename"
(CSAVE-1 "filename")

INPUT# 1.# Data transmission command. This command transmits
IN.# data recorded on tape into the specified variables.
INP.#
INPU.# Takes same form as PRINT#command.

MERGE MER. Transmission command. This command transmits
MERG. programs from tape to the computer. Takes same form

as CLOAD command.

In this command, previously recorded programs will be
retained as they are and programs newly read in will be
added.

PRINT# P.# Data recording command. This command records onto
PR.# tape the data stored in the PC-1500.
PRI. # (1 ) PR INT # variable name, variable name, ...PRIN.#

(PRINT # -1, variable name, variable name ..... )
(2) PRINT # "filename"; variable name, ...

(PR INT #-1, "filename"; variable name, ... )

RMT OFF RM.OF. This command cancels the remote function of REM 1
(remote off) RMTOF. terminal. (For second tape recorder)

RMT ON RM.O. This command resets the remote function of REM 1
(remote on) RMTO. terminal. (For second tape recorder)

5. Printer Commands

Command Abbreviation Remarks

COLOR COL. Specifies color of characters.
COLO. COLOR expression (0 < = expression <= 3)

CSIZE CSI. Specifies size of the characters to be printer.
(character CSIZ. CSIZE expression (1 <= expression < = 9)
size)

162



Command Abbreviation Remarks

GLCURSOR GL. Command that moves the pen position from the
(graphic line GLC. starting point to an X, Y coordinate. Valid for
cursor) GLCU. GRAPH mode only.

GLCUR.
GLCURS. GLCURSOR (exp 1, exp2)
GLCURSO.

GRAPH GRAP. This mode is used to draw graphs and illustrations.
(graphic)

LCURSOR LCU. Moves pen to desired position on printer.
(line cursor) LCUR.

LCURS.
LCURSO.

LF Performs paper feed as far as number of line feeds
(line feed) shown by the expression.

Valid for TEXT mode only.

LF expression

LINE LIN. Line drawing commands.

Valid for GRAPH mode only.

(1) LINE (expl, exp2)-(exp3, exp4)

(2) LINE (expl, exp2)-(exp3, exp41. exp5, exp6

(3) LINE (expl, exp2)-(exp3, exp41. exp5, exp6, B

exp5: specifies line type
exp6: specifies color

B: specifies a box drawing

(4) LINE (exp1, exp2)-(exp3, exp4)-···
... (expl1,exp12)

LLiST LL. List program.
LLI.
LLiS.

LPRINT LP. Prints specified content.
LPR. Valid for text mode only. Takes same form as PRINT
LPRI. commands. .
LPRIN.

RLiNE RL. Command that draws lines with the pen position as the
(relative RLI. starting point.
line) RLiN. Valid for GRAPH mode only. Takes same form as

LINE commands.

ROTATE RO. Specifies direction of characters to be printed (print
(rotate) ROT. direction). Valid for GRAPH mode only.

ROTA.
ROTATE expression (0 < = expression < = 3)ROTAT.

163



Command Abbreviation Remarks

SORGN SO. This command specifies the present pen position as the
(set origin) SOR. new starting point (point of origin). Valid for GRAPH

SORGo mode only.

TAB Specifies pen position.

Valid for TEXT mode only.

(1 ) TAB Expression

(2) LPRINT TAB Expression; ...

TEST TE. Color check. When executed, test draws a 5 mm by
TES. 5mm square in each color.

TEXT TEX. TEXT mode specification. This mode prints characters
and numerals.

- Caution - (Refer to page 46)
This unit is capable of calculation for a mantissa of up to 12 digits. To increase accuracy, however,
the mantissa is calculated inside the unit up to 12 digits, the result of which is rounded to the
10th digit for display. For example, 5/9 and 5/9 *9 are calculated as follows:

5/9 ~ 5.55555555555E-01
L--This is rounded to the 10th digit.

Display ---+ 5.555555556E-01

3IsHIFTI~2 8 9 IENTERI--+ - 9E -11
31sHIFTI~2 IENTER I ~ 9

89 IENTERI ~ 0
Even in the IF statement, th is difference may cause the program not to work as planned for any
successive calculations.

[Example 2] 10 INPUT A

20 IFA" 2 >= 9 TH EN 50

5/9 *9 - 4.99999999999E 00
L-This is rounded to the 10th digit.

Display --+ 5.
Thus, calculations are carried out for mantissas of up to 12 digits. This may cause a difference
in the results of calculations when performed in succession and independently.

[Example 1] 3 2 _ 9 =

Successive calculation:
Independent calculation:

The result of A " 2 is substituted for a variable, which is
used to formulate a conditional expression.

With A = 3, 3 " 2 results in 8.99999999991 E 00, making an IF statement
unformulated.

In this case, reprogram the calculation by using variables so that it is independent, as follows:
10 INPUT A

15B=A"2 }
20 IF B > = 9 THEN 50

(

Power calculations are based on log x and 10x, thus tending to cause a difference in the)
results from those calculated inside the computer.

A" B _ lOB log A

END

164



NOTE:

SERVICE CENTER ADDRESS

SHARP ELECTRONICS CORPORATION
9 Sharp Plaza, Paramus, New Jersey 07652
(201) 265·5600

SHARP ELECTRONICS CORPORATION
64781-85 Norcross, Georgia 30093
(404) 448·5230

SHARP ELECTRONICS CORPORATION
430 East Plainfield Road, Countryside, Illinois 60525
(312) 242-0870

SHARP ELECTRONICS CORPORATION
Sharp Plaza
20600 South Alameda St., Carson California 90810
(213) 637-9488

SHARP ELECTRONICS CORPORATION
1205 Executive Drive, East Richardson, Texas. 75080
(214) 234-1136

Whether or not your unit is still in warranty, you should return it together
with all peripherals, 1 if connected to or installed in the PC·1500 when the
fault condition (defect) was observed. In this way, we can verify total
system performance. Send your equipment to the closest SHARP FACTORY
SERVICE CENTER listed above:

1. Applies only to items manufactured by Sharp Electronics Corp.



\ 1\ \

SHARP ELECTRONICS CORPORATION

CORPORATE HEADQUARTERS AND EXECUTIVE OFFICES:
10 Sharp Plaza, Paramus, New Jersey 07652. Phone: (201) 265·5600

REGIONAL SALES OFFICES AND DISTRIBUTION CENTERS:
Eastarn: 10 Sharp Plaza, Paramus, New Jersey 07652. Phona: (201) 265·5600
Midwest: 430 East Plainfield Road, Country Side, Illinois 60525. Phona: (3121242·0870
Western: Sherp Plaza 20600 South Alameda St., Carson, California 90810. Phone: (213) 637·94B8

Printed in Japan

2K2T(TINSE3434CCZZ)Q)


	image00001
	image00002
	image00003
	image00004
	image00005
	image00006
	image00007
	image00008
	image00009
	image00010
	image00011
	image00012
	image00013
	image00014
	image00015
	image00016
	image00017
	image00018
	image00019
	image00020
	image00021
	image00022
	image00023
	image00024
	image00025
	image00026
	image00027
	image00028
	image00029
	image00030
	image00031
	image00032
	image00033
	image00034
	image00035
	image00036
	image00037
	image00038
	image00039
	image00040
	image00041
	image00042
	image00043
	image00044
	image00045
	image00046
	image00047
	image00048
	image00049
	image00050
	image00051
	image00052
	image00053
	image00054
	image00055
	image00056
	image00057
	image00058
	image00059
	image00060
	image00061
	image00062
	image00063
	image00064
	image00065
	image00066
	image00067
	image00068
	image00069
	image00070
	image00071
	image00072
	image00073
	image00074
	image00075
	image00076
	image00077
	image00078
	image00079
	image00080
	image00081
	image00082
	image00083
	image00084
	image00085
	image00086
	image00087
	image00088
	image00089
	image00090
	image00091
	image00092
	image00093
	image00094
	image00095
	image00096
	image00097
	image00098
	image00099
	image00100
	image00101
	image00102
	image00103
	image00104
	image00105
	image00106
	image00107
	image00108
	image00109
	image00110
	image00111
	image00112
	image00113
	image00114
	image00115
	image00116
	image00117
	image00118
	image00119
	image00120
	image00121
	image00122
	image00123
	image00124
	image00125
	image00126
	image00127
	image00128
	image00129
	image00130
	image00131
	image00132
	image00133
	image00134
	image00135
	image00136
	image00137
	image00138
	image00139
	image00140
	image00141
	image00142
	image00143
	image00144
	image00145
	image00146
	image00147
	image00148
	image00149
	image00150
	image00151
	image00152
	image00153
	image00154
	image00155
	image00156
	image00157
	image00158
	image00159
	image00160
	image00161
	image00162
	image00163
	image00164
	image00165
	image00166
	image00167
	image00168

